looking for it along $PATH. This allows installs of LLVM tools outside of
$PATH to find the symbolizer and produce pretty backtraces if they crash.
llvm-svn: 272232
This is the simplest possible patch to get some kind of YAML
output. All it dumps is the MSF header fields so that in
theory an empty MSF file could be reconstructed.
Reviewed By: ruiu, majnemer
Differential Revision: http://reviews.llvm.org/D20971
llvm-svn: 271939
The data strucutre in the new FPO stream is described in the
PE/COFF spec. There is one record per function if frame pointer
is omitted.
Differential Revision: http://reviews.llvm.org/D20999
llvm-svn: 271926
This opens the door to introducing a YAML outputter which can be
used for machine consumption. Currently the yaml output style
is unimplemented and returns an error if you try to use it.
Reviewed By: rnk, ruiu
Differential Revision: http://reviews.llvm.org/D20967
llvm-svn: 271712
When printing line information and file checksums, we were printing
the file offset field from the struct header. This teaches
llvm-pdbdump how to turn those numbers into the filename. In the
case of file checksums, this is done by looking in the global
string table. In the case of line contributions, this is done
by indexing into the file names buffer of the DBI stream. Why
they use a different technique I don't know.
llvm-svn: 271630
To facilitate this, a couple of changes had to be made:
1. `ModuleSubstream` got moved from `DebugInfo/PDB` to
`DebugInfo/CodeView`, and various codeview related types are defined
there. It turns out `DebugInfo/CodeView/Line.h` already defines many of
these structures, but this is really old code that is not endian aware,
doesn't interact well with `StreamInterface` and not very helpful for
getting stuff out of a PDB. Eventually we should migrate the old readobj
`COFFDumper` code to these new structures, or at least merge their
functionality somehow.
2. A `ModuleSubstream` visitor is introduced. Depending on where your
module substream array comes from, different subsets of record types can
be expected. We are already hand parsing these substream arrays in many
places especially in `COFFDumper.cpp`. In the future we can migrate these
paths to the visitor as well, which should reduce a lot of code in
`COFFDumper.cpp`.
Differential Revision: http://reviews.llvm.org/D20936
Reviewed By: ruiu, majnemer
llvm-svn: 271621
This first pass only splits apart the records and dumps the line
info kinds and binary data. Subsequent patches will parse out
the binary data into more useful information and dump it in
detail.
llvm-svn: 271576
Unlike other sections that can grow to any size, the COFF section header
stream has maximum length because each record is fixed size and the COFF
file format limits the maximum number of sections. So I decided to not
create a specific stream class for it. Instead, I added a member function
to DbiStream class which returns a vector of COFF headers.
Differential Revision: http://reviews.llvm.org/D20717
llvm-svn: 271557
Adds the method MCStreamer::EmitBinaryData, which is usually an alias
for EmitBytes. In the MCAsmStreamer case, it is overridden to emit hex
dump output like this:
.byte 0x0e, 0x00, 0x08, 0x10
.byte 0x03, 0x00, 0x00, 0x00
.byte 0x00, 0x00, 0x00, 0x00
.byte 0x00, 0x10, 0x00, 0x00
Also, when verbose asm comments are enabled, this patch prints the dump
output for each comment before its record, like this:
# ArgList (0x1000) {
# TypeLeafKind: LF_ARGLIST (0x1201)
# NumArgs: 0
# Arguments [
# ]
# }
.byte 0x06, 0x00, 0x01, 0x12
.byte 0x00, 0x00, 0x00, 0x00
This should make debugging easier and testing more convenient.
Reviewers: aaboud
Subscribers: majnemer, zturner, amccarth, aaboud, llvm-commits
Differential Revision: http://reviews.llvm.org/D20711
llvm-svn: 271313
This converts remaining uses of ByteStream, which was still
left in the symbol stream and type stream, to using the new
StreamInterface zero-copy classes.
RecordIterator is finally deleted, so this is the only way left
now. Additionally, more error checking is added when iterating
the various streams.
With this, the transition to zero copy pdb access is complete.
llvm-svn: 271101
Since we want to move toward zero-copy access to stream data, we
want to remove all instances of copying operations. So get rid
of some of those here.
Differential Revision: http://reviews.llvm.org/D20720
Reviewed By: ruiu
llvm-svn: 270960
PDBs can be extremely large. We're already mapping the entire
PDB into the process's address space, but to make matters worse
the blocks of the PDB are not arranged contiguously. So, when
we have something like an array or a string embedded into the
stream, we have to make a copy. Since it's convenient to use
traditional data structures to iterate and manipulate these
records, we need the memory to be contiguous.
As a result of this, we were using roughly twice as much memory
as the file size of the PDB, because every stream was copied
out and re-stitched together contiguously.
This patch addresses this by improving the MappedBlockStream
to allocate from a BumpPtrAllocator only when a read requires
a discontiguous read. Furthermore, it introduces some data
structures backed by a stream which can iterate over both
fixed and variable length records of a PDB. Since everything
is backed by a stream and not a buffer, we can read almost
everything from the PDB with zero copies.
Differential Revision: http://reviews.llvm.org/D20654
Reviewed By: ruiu
llvm-svn: 270951
We have need to reuse this functionality, including making
additional generic stream types that are smarter about how and
when they copy memory versus referencing the original memory.
So all of these structures belong in the common library
rather than being pdb specific.
llvm-svn: 270751
When dumping huge PDB files, too many of the options were grouped
together so you would get neverending spew of output. This patch
introduces more granular display options so you can only dump the
fields you actually care about.
llvm-svn: 270607
This makes use of the newly introduced `CVSymbolVisitor` to dump details
of each type of symbol record in the symbol streams. Future patches will
bring this visitor based dumping to the publics stream, as well as
creating a `SymbolDumpDelegate` to print more information about
relocations etc.
Differential Revision: http://reviews.llvm.org/D20545
Reviewed By: ruiu
llvm-svn: 270585
DBI stream contains a stream number of the symbol record stream.
Symbol record streams is an array of length-type-value members.
Each member represents one symbol.
Publics stream contains offsets to the symbol record stream.
This patch is to print out all symbols that are referenced by
the publics stream.
Note that even with this patch, llvm-pdbdump cannot dump all the
information in a publics stream since it contains more information
than symbol names. I'll improve it in followup patches.
Differential Revision: http://reviews.llvm.org/D20480
llvm-svn: 270262
I don't yet fully understand the meaning of these data strcutures,
but at least it seems that their sizes and types are correct.
With this change, we can read publics streams till end.
Differential Revision: http://reviews.llvm.org/D20343
llvm-svn: 269861
Publics stream seems to contain information as to public symbols.
It actually contains a serialized hash table along with fixed-sized
headers. This patch is not complete. It scans only till the end of
the stream and dump the header information. I'll write code to
de-serialize the hash table later.
Reviewers: zturner
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D20256
llvm-svn: 269484
This reuses the CVTypeDumper from libcodeview to dump full
information about type records within a PDB file.
Differential Revision: http://reviews.llvm.org/D20022
Reviewed By: rnk
llvm-svn: 268808
When printing raw PDB file fields, streams, and records, use the
ScopedPrinter class so we have consistency with llvm-readobj's output
format.
For the most part this is pretty mechanical, but I had to fix up the test
file to conform to the new YAMLesque output format. i added a few
additional helper functions to the ScopedPrinter such as one to print a
dotted version, etc.
Differential Revision: http://reviews.llvm.org/D19897
Reviewed By: rnk
llvm-svn: 268506
Ability to parse codeview type streams is also needed by
DebugInfoPDB for parsing PDBs, so moving this into a library
gives us this option. Since DebugInfoPDB had already hand
rolled some code to do this, that code is now convereted over
to using this common abstraction.
Differential Revision: http://reviews.llvm.org/D19887
Reviewed By: dblaikie, amccarth
llvm-svn: 268454
This parses the TPI stream (stream 2) from the PDB file. This stream
contains some header information followed by a series of codeview records.
There is some additional complexity here in that alongside this stream of
codeview records is a serialized hash table in order to efficiently query
the types. We parse the necessary bookkeeping information to allow us to
reconstruct the hash table, but we do not actually construct it yet as
there are still a few things that need to be understood first.
Differential Revision: http://reviews.llvm.org/D19840
Reviewed By: ruiu, rnk
llvm-svn: 268343
PDB has a lot of similar data structures. We already have code
for parsing a Name Map, but PDB seems to have a different but
very similar structure that is a hash table. This is the
beginning of code needed in order to parse the name hash table,
but it is not yet complete. It parses the basic metadata of
the hash table, the bucket array, and the names buffer, but
doesn't use any of these fields yet as the data structure
requires a non-trivial amount of work to understand.
llvm-svn: 268268
The motivation for this change is that PDB has the notion of
streams and substreams. Substreams often consist of variable
length structures that are convenient to be able to treat as
guaranteed, contiguous byte arrays, whereas the streams they
are contained in are not necessarily so, as a single stream
could be spread across many discontiguous blocks.
So, when processing data from a substream, we want to be able
to assume that we have a contiguous byte array so that we can
cast pointers to variable length arrays and such.
This leads to the question of how to be able to read the same
data structure from either a stream or a substream using the
same interface, which is where this patch comes in.
We separate out the stream's read state from the underlying
representation, and introduce a `StreamReader` class. Then
we change the name of `PDBStream` to `MappedBlockStream`, and
introduce a second kind of stream called a `ByteStream` which is
simply a sequence of contiguous bytes. Finally, we update all
of the std::vectors in `PDBDbiStream` to use `ByteStream` instead
as a proof of concept.
llvm-svn: 268071