This is a follow up to [Sanitizers][Darwin] Rename Apple macro SANITIZER_MAC -> SANITIZER_APPLE (D125816)
Performed a global search/replace as in title against LLVM sources
Differential Revision: https://reviews.llvm.org/D126263
Currently we use very common names for macros like ACQUIRE/RELEASE,
which cause conflicts with system headers.
Prefix all macros with SANITIZER_ to avoid conflicts.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D116652
Although THREADLOCAL variables are supported on Darwin they cannot be
used very early on during process init (before dyld has set it up).
Unfortunately the checked lock is used before dyld has setup TLS leading
to an abort call (`_tlv_boostrap()` is never supposed to be called at
runtime).
To avoid this problem `SANITIZER_CHECK_DEADLOCKS` is now disabled on
Darwin platforms. This fixes running TSan tests (an possibly other
Sanitizers) when `COMPILER_RT_DEBUG=ON`.
For reference the crashing backtrace looks like this:
```
* thread #1, stop reason = signal SIGABRT
* frame #0: 0x00000002044da0ae dyld`__abort_with_payload + 10
frame #1: 0x00000002044f01af dyld`abort_with_payload_wrapper_internal + 80
frame #2: 0x00000002044f01e1 dyld`abort_with_payload + 9
frame #3: 0x000000010c989060 dyld_sim`abort_with_payload + 26
frame #4: 0x000000010c94908b dyld_sim`dyld4::halt(char const*) + 375
frame #5: 0x000000010c988f5c dyld_sim`abort + 16
frame #6: 0x000000010c96104f dyld_sim`dyld4::APIs::_tlv_bootstrap() + 9
frame #7: 0x000000010cd8d6d2 libclang_rt.tsan_iossim_dynamic.dylib`__sanitizer::CheckedMutex::LockImpl(this=<unavailable>, pc=<unavailable>) at sanitizer_mutex.cpp:218:58 [opt]
frame #8: 0x000000010cd8a0f7 libclang_rt.tsan_iossim_dynamic.dylib`__sanitizer::Mutex::Lock() [inlined] __sanitizer::CheckedMutex::Lock(this=0x000000010d733c90) at sanitizer_mutex.h:124:5 [opt]
frame #9: 0x000000010cd8a0ee libclang_rt.tsan_iossim_dynamic.dylib`__sanitizer::Mutex::Lock(this=0x000000010d733c90) at sanitizer_mutex.h:162:19 [opt]
frame #10: 0x000000010cd8a0bf libclang_rt.tsan_iossim_dynamic.dylib`__sanitizer::GenericScopedLock<__sanitizer::Mutex>::GenericScopedLock(this=0x000000030c7479a8, mu=<unavailable>) at sanitizer_mutex.h:364:10 [opt]
frame #11: 0x000000010cd89819 libclang_rt.tsan_iossim_dynamic.dylib`__sanitizer::GenericScopedLock<__sanitizer::Mutex>::GenericScopedLock(this=0x000000030c7479a8, mu=<unavailable>) at sanitizer_mutex.h:363:67 [opt]
frame #12: 0x000000010cd8985b libclang_rt.tsan_iossim_dynamic.dylib`__sanitizer::LibIgnore::OnLibraryLoaded(this=0x000000010d72f480, name=0x0000000000000000) at sanitizer_libignore.cpp:39:8 [opt]
frame #13: 0x000000010cda7aaa libclang_rt.tsan_iossim_dynamic.dylib`__tsan::InitializeLibIgnore() at tsan_interceptors_posix.cpp:219:16 [opt]
frame #14: 0x000000010cdce0bb libclang_rt.tsan_iossim_dynamic.dylib`__tsan::Initialize(thr=0x0000000110141400) at tsan_rtl.cpp:403:3 [opt]
frame #15: 0x000000010cda7b8e libclang_rt.tsan_iossim_dynamic.dylib`__tsan::ScopedInterceptor::ScopedInterceptor(__tsan::ThreadState*, char const*, unsigned long) [inlined] __tsan::LazyInitialize(thr=0x0000000110141400) at tsan_rtl.h:665:5 [opt]
frame #16: 0x000000010cda7b86 libclang_rt.tsan_iossim_dynamic.dylib`__tsan::ScopedInterceptor::ScopedInterceptor(this=0x000000030c747af8, thr=0x0000000110141400, fname=<unavailable>, pc=4568918787) at tsan_interceptors_posix.cpp:247:3 [opt]
frame #17: 0x000000010cda7bb9 libclang_rt.tsan_iossim_dynamic.dylib`__tsan::ScopedInterceptor::ScopedInterceptor(this=0x000000030c747af8, thr=<unavailable>, fname=<unavailable>, pc=<unavailable>) at tsan_interceptors_posix.cpp:246:59 [opt]
frame #18: 0x000000010cdb72b7 libclang_rt.tsan_iossim_dynamic.dylib`::wrap_strlcpy(dst="\xd2", src="0xd1d398d1bb0a007b", size=20) at sanitizer_common_interceptors.inc:7386:3 [opt]
frame #19: 0x0000000110542b03 libsystem_c.dylib`__guard_setup + 140
frame #20: 0x00000001104f8ab4 libsystem_c.dylib`_libc_initializer + 65
...
```
rdar://83723445
Differential Revision: https://reviews.llvm.org/D111243
After switching tsan from the old mutex to the new sanitizer_common mutex,
we've observed a significant degradation of performance on a test.
The test effectively stresses a lock-free stack with 4 threads
with a mix of atomic_compare_exchange and atomic_load operations.
The former takes write lock, while the latter takes read lock.
It turned out the new mutex performs worse because readers don't
use active spinning, which results in significant amount of thread
blocking/unblocking. The old tsan mutex used active spinning
for both writers and readers.
Add active spinning for readers.
Don't hand off the mutex to readers, and instread make them
compete for the mutex after wake up again.
This makes readers and writers almost symmetric.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D107824
022439931f added code that is only enabled
when COMPILER_RT_DEBUG is enabled. This code doesn't build on targets
that don't support thread local storage because the code added uses the
THREADLOCAL macro. Consequently the COMPILER_RT_DEBUG build broke for
some Apple targets (e.g. 32-bit iOS simulators).
```
/Volumes/user_data/dev/llvm/llvm.org/main/src/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_mutex.cpp:216:8: error: thread-local storage is not supported for the current target
static THREADLOCAL InternalDeadlockDetector deadlock_detector;
^
/Volumes/user_data/dev/llvm/llvm.org/main/src/llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_internal_defs.h:227:24: note: expanded from macro 'THREADLOCAL'
# define THREADLOCAL __thread
^
1 error generated.
```
To fix this, this patch introduces a `SANITIZER_SUPPORTS_THREADLOCAL`
macro that is `1` iff thread local storage is supported by the current
target. That condition is then added to `SANITIZER_CHECK_DEADLOCKS` to
ensure the code is only enabled when thread local storage is available.
The implementation of `SANITIZER_SUPPORTS_THREADLOCAL` currently assumes
Clang. See `llvm-project/clang/include/clang/Basic/Features.def` for the
definition of the `tls` feature.
rdar://81543007
Differential Revision: https://reviews.llvm.org/D107524
Don't lock the sync object inside of MetaMap methods.
This has several advantages:
- the new interface does not confuse thread-safety analysis
so we can remove a bunch of NO_THREAD_SAFETY_ANALYSIS attributes
- this allows use of scoped lock objects
- this allows more flexibility, e.g. locking some other mutex
between searching and locking the sync object
Also prefix the methods with GetSync to be consistent with GetBlock method.
Also make interface wrappers inlinable, otherwise we either end up with
2 copies of the method, or with an additional call.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D107256
Mutex supports reader access, OS blocking, spinning,
portable and smaller than BlockingMutex.
Overall it's supposed to be better than RWMutex/BlockingMutex.
Replace RWMutex/BlockingMutex with Mutex.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D106936
Mutex does not support LINKER_INITIALIZED ctor.
But we used to support it with BlockingMutex.
To prevent potential bugs delete LINKER_INITIALIZED Mutex ctor.
Also mark existing ctor as explicit.
Depends on D106944.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D106945
Now that sanitizer_common mutex has feature-parity with tsan mutex,
switch tsan to the sanitizer_common mutex and remove tsan's custom mutex.
Reviewed By: vitalybuka, melver
Differential Revision: https://reviews.llvm.org/D106379
Copy internal deadlock detector from tsan to sanitizer_common
(with some cosmetic changes).
Tsan version will be deleted in subsequent changes.
This allows us to switch tsan to the sanitizer_common mutex
and remove tsan's mutex.
Reviewed By: vitalybuka, melver
Differential Revision: https://reviews.llvm.org/D106546
Patch "sanitizer_common: modernize SpinMutex" added default
ctor to StaticSpinMutex. But it broke some gcc bots with:
scudo_tsd_exclusive.cpp:25:22: error: non-local variable
‘__scudo::TSD’ declared ‘__thread’ needs dynamic initialization
https://lab.llvm.org/buildbot/#/builders/105/builds/12649
Unfortunatly none of empty ctor {}, no ctor, default constexpr ctor
work for different reasons. So remove StaticSpinMutex ctor
entirely and move deleted copy ctor back to SpinMutex.
Differential Revision: https://reviews.llvm.org/D106424
Some minor improvements:
1. Make StaticSpinMutex non-copyable.
2. Add LIKELY to Lock.
3. Move LockSlow into the .cpp file (now that we have it).
4. The only non-trivial change: use proc_yield(1) instread of proc_yield(10)
with the proportional increase in the number of spin iterations.
Latency of the PAUSE instruction has raised from ~1 cycle to ~100 cycles
in the recent Intel CPUs. So proc_yield(10) is too aggressive backoff.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D106350
We currently have 3 different mutexes:
- RWMutex
- BlockingMutex
- __tsan::Mutex
RWMutex and __tsan::Mutex are roughly the same,
except that tsan version supports deadlock detection.
BlockingMutex degrades better under heavy contention
from lots of threads (blocks in OS), but much slower
for light contention and has non-portable performance
and has larger static size and is not reader-writer.
Add a new mutex that combines all advantages of these
mutexes: it's reader-writer, has fast non-contended path,
supports blocking to gracefully degrade under higher contention,
has portable size/performance.
For now it's named Mutex2 for incremental submission. The plan is to:
- land this change
- then move deadlock detection logic from tsan
- then rename it to Mutex and remove tsan Mutex
- then typedef RWMutex/BlockingMutex to this mutex
SpinMutex stays as separate type because it has faster fast path:
1 atomic RMW per lock/unlock as compared to 2 for this mutex.
Reviewed By: vitalybuka, melver
Differential Revision: https://reviews.llvm.org/D106231
Semaphore is a portable way to park/unpark threads.
The plan is to use it to implement a portable blocking
mutex in subsequent changes. Semaphore can also be used
to efficiently wait for other things (e.g. we currently
spin to synchronize thread creation and start).
Reviewed By: vitalybuka, melver
Differential Revision: https://reviews.llvm.org/D106071
Currently we don't lock ScopedErrorReportLock around fork
and it mostly works becuase tsan has own report_mtx that
is locked around fork and tsan reports.
However, sanitizer_common code prints some own reports
which are not protected by tsan's report_mtx. So it's better
to lock ScopedErrorReportLock explicitly.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D106048
Enable clang Thread Safety Analysis for sanitizers:
https://clang.llvm.org/docs/ThreadSafetyAnalysis.html
Thread Safety Analysis can detect inconsistent locking,
deadlocks and data races. Without GUARDED_BY annotations
it has limited value. But this does all the heavy lifting
to enable analysis and allows to add GUARDED_BY incrementally.
Reviewed By: melver
Differential Revision: https://reviews.llvm.org/D105716
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
Before my change, BlockingMutex used Windows critial sections. Critical
sections can only be initialized by calling InitializeCriticalSection,
dynamically.
The primary sanitizer allocator expects to be able to reinterpret zero
initialized memory as a BlockingMutex and immediately lock it.
RegionInfo contains a mutex, and it placement new is never called for
it. These objects are accessed via:
RegionInfo *GetRegionInfo(uptr class_id) const {
DCHECK_LT(class_id, kNumClasses);
RegionInfo *regions = reinterpret_cast<RegionInfo *>(SpaceEnd());
return ®ions[class_id];
}
The memory comes from the OS without any other initialization.
For various reasons described in the comments, BlockingMutex::Lock would
check if the object appeared to be zero-initialized, and it would lazily
call the LinkerInitialized constructor to initialize the critical
section. This pattern is obviously racy, and the code had a bunch of
FIXMEs about it.
The best fix here is to use slim reader writer locks, which can start
out zero-initialized. They are available starting in Windows Vista. I
think it's safe to go ahead and use them today.
Reviewers: kcc, vitalybuka
Subscribers: kubamracek, llvm-commits
Differential Revision: https://reviews.llvm.org/D49893
llvm-svn: 338331
Summary:
This is the first mostly working version of the Sanitizer port to 32-bit Solaris/x86.
It is currently based on Solaris 11.4 Beta.
This part was initially developed inside libsanitizer in the GCC tree and should apply to
both. Subsequent parts will address changes to clang, the compiler-rt build system
and testsuite.
I'm not yet sure what the right patch granularity is: if it's profitable to split the patch
up, I'd like to get guidance on how to do so.
Most of the changes are probably straightforward with a few exceptions:
* The Solaris syscall interface isn't stable, undocumented and can change within an
OS release. The stable interface is the libc interface, which I'm using here, if possible
using the internal _-prefixed names.
* While the patch primarily target 32-bit x86, I've left a few sparc changes in. They
cannot currently be used with clang due to a backend limitation, but have worked
fine inside the gcc tree.
* Some functions (e.g. largefile versions of functions like open64) only exist in 32-bit
Solaris, so I've introduced a separate SANITIZER_SOLARIS32 to check for that.
The patch (with the subsequent ones to be submitted shortly) was tested
on i386-pc-solaris2.11. Only a few failures remain, some of them analyzed, some
still TBD:
AddressSanitizer-i386-sunos :: TestCases/Posix/concurrent_overflow.cc
AddressSanitizer-i386-sunos :: TestCases/init-order-atexit.cc
AddressSanitizer-i386-sunos :: TestCases/log-path_test.cc
AddressSanitizer-i386-sunos :: TestCases/malloc-no-intercept.c
AddressSanitizer-i386-sunos-dynamic :: TestCases/Posix/concurrent_overflow.cc
AddressSanitizer-i386-sunos-dynamic :: TestCases/Posix/start-deactivated.cc
AddressSanitizer-i386-sunos-dynamic :: TestCases/default_options.cc
AddressSanitizer-i386-sunos-dynamic :: TestCases/init-order-atexit.cc
AddressSanitizer-i386-sunos-dynamic :: TestCases/log-path_test.cc
AddressSanitizer-i386-sunos-dynamic :: TestCases/malloc-no-intercept.c
SanitizerCommon-Unit :: ./Sanitizer-i386-Test/MemoryMappingLayout.DumpListOfModules
SanitizerCommon-Unit :: ./Sanitizer-i386-Test/SanitizerCommon.PthreadDestructorIterations
Maybe this is good enough the get the ball rolling.
Reviewers: kcc, alekseyshl
Reviewed By: alekseyshl
Subscribers: srhines, jyknight, kubamracek, krytarowski, fedor.sergeev, llvm-commits, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D40898
llvm-svn: 320740
Summary:
This patch unifies the behavior of BlockingMutex on linux and mac,
resolving problems that can arise when BlockingMutex is used in
code shared by the two platforms but has different behavior depending
on the platform.
No longer requires that the calling thread own the mutex for
CheckLocked calls to pass.
Reviewers: dvyukov, kubamracek
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29728
llvm-svn: 294614
Summary:
This fixes a deadlock which happens in lsan
on a large memalign-allocated chunk that resides in lsan's root set.
Reviewers: samsonov, earthdok
Reviewed By: earthdok
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1957
llvm-svn: 192885