This patch gives basic parsing and semantic support for "masked taskloop"
construct introduced in OpenMP 5.1 (section 2.16.7)
Differential Revision: https://reviews.llvm.org/D128478
Some code [0] consider that trailing arrays are flexible, whatever their size.
Support for these legacy code has been introduced in
f8f6324983 but it prevents evaluation of
__builtin_object_size and __builtin_dynamic_object_size in some legit cases.
Introduce -fstrict-flex-arrays=<n> to have stricter conformance when it is
desirable.
n = 0: current behavior, any trailing array member is a flexible array. The default.
n = 1: any trailing array member of undefined, 0 or 1 size is a flexible array member
n = 2: any trailing array member of undefined or 0 size is a flexible array member
n = 3: any trailing array member of undefined size is a flexible array member (strict c99 conformance)
Similar patch for gcc discuss here: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836
[0] https://docs.freebsd.org/en/books/developers-handbook/sockets/#sockets-essential-functions
Introducing structured binding to data members and more.
To handle binding to arrays, ArrayInitLoopExpr is also
evaluated, which enables the analyzer to store information
in two more cases. These are:
- when a lambda-expression captures an array by value
- in the implicit copy/move constructor for a class
with an array member
Differential Revision: https://reviews.llvm.org/D126613
The functions 'mkdir', 'mknod', 'mkdirat', 'mknodat' return 0 on success
and -1 on failure. The checker modeled these functions with a >= 0
return value on success which is changed to 0 only. This fix makes
ErrnoChecker work better for these functions.
Reviewed By: steakhal
Differential Revision: https://reviews.llvm.org/D127277
This updates StdLibraryFunctionsChecker to set the state of 'errno'
by using the new errno_modeling functionality.
The errno value is set in the PostCall callback. Setting it in call::Eval
did not work for some reason and then every function should be
EvalCallAsPure which may be bad to do. Now the errno value and state
is not allowed to be checked in any PostCall checker callback because
it is unspecified if the errno was set already or will be set later
by this checker.
Reviewed By: martong, steakhal
Differential Revision: https://reviews.llvm.org/D125400
Extend checker 'ErrnoModeling' with a state of 'errno' to indicate
the importance of the 'errno' value and how it should be used.
Add a new checker 'ErrnoChecker' that observes use of 'errno' and
finds possible wrong uses, based on the "errno state".
The "errno state" should be set (together with value of 'errno')
by other checkers (that perform modeling of the given function)
in the future. Currently only a test function can set this value.
The new checker has no user-observable effect yet.
Reviewed By: martong, steakhal
Differential Revision: https://reviews.llvm.org/D122150
If a lazyCompoundVal to a struct is bound to the store, there is a policy which decides
whether a copy gets created instead.
This patch introduces a similar policy for arrays, which is required to model structured
binding to arrays without false negatives.
Differential Revision: https://reviews.llvm.org/D128064
The arithmetic restriction seems to be artificial.
The comment below seems to be stale.
Thus, we remove both.
Depends on D127306.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D127763
Previously, system globals were treated as immutable regions, unless it
was the `errno` which is known to be frequently modified.
D124244 wants to add a check for stores to immutable regions.
It would basically turn all stores to system globals into an error even
though we have no reason to believe that those mutable sys globals
should be treated as if they were immutable. And this leads to
false-positives if we apply D124244.
In this patch, I'm proposing to treat mutable sys globals actually
mutable, hence allocate them into the `GlobalSystemSpaceRegion`, UNLESS
they were declared as `const` (and a primitive arithmetic type), in
which case, we should use `GlobalImmutableSpaceRegion`.
In any other cases, I'm using the `GlobalInternalSpaceRegion`, which is
no different than the previous behavior.
---
In the tests I added, only the last `expected-warning` was different, compared to the baseline.
Which is this:
```lang=C++
void test_my_mutable_system_global_constraint() {
assert(my_mutable_system_global > 2);
clang_analyzer_eval(my_mutable_system_global > 2); // expected-warning {{TRUE}}
invalidate_globals();
clang_analyzer_eval(my_mutable_system_global > 2); // expected-warning {{UNKNOWN}} It was previously TRUE.
}
void test_my_mutable_system_global_assign(int x) {
my_mutable_system_global = x;
clang_analyzer_eval(my_mutable_system_global == x); // expected-warning {{TRUE}}
invalidate_globals();
clang_analyzer_eval(my_mutable_system_global == x); // expected-warning {{UNKNOWN}} It was previously TRUE.
}
```
---
Unfortunately, the taint checker will be also affected.
The `stdin` global variable is a pointer, which is assumed to be a taint
source, and the rest of the taint propagation rules will propagate from
it.
However, since mutable variables are no longer treated immutable, they
also get invalidated, when an opaque function call happens, such as the
first `scanf(stdin, ...)`. This would effectively remove taint from the
pointer, consequently disable all the rest of the taint propagations
down the line from the `stdin` variable.
All that said, I decided to look through `DerivedSymbol`s as well, to
acquire the memregion in that case as well. This should preserve the
previously existing taint reports.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D127306
Initially, I thought there is some fundamental bug here by not using the
bool fields, but it turns out D55425 split this checker into two
separate ones; making these fields dead.
Depends on D127836, which uncovered this issue.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D127838
The `Profile` function was incorrectly implemented.
The `StreamErrorState` has an implicit `bool` conversion operator, which
will result in a different hash than faithfully hashing the raw value of
the enum.
I don't have a test for it, since it seems difficult to find one.
Even if we would have one, any change in the hashing algorithm would
have a chance of breaking it, so I don't think it would justify the
effort.
Depends on D127836, which uncovered this issue by marking the related
`Profile` function dead.
Reviewed By: martong, balazske
Differential Revision: https://reviews.llvm.org/D127839
Thanks @kazu for helping me clean these parts in D127799.
I'm leaving the dump methods, along with the unused visitor handlers and
the forwarding methods.
The dead parts actually helped to uncover two bugs, to which I'm going
to post separate patches.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D127836
This is an initial step of removing the SimpleSValBuilder abstraction. The SValBuilder alone should be enough.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D126127
This change specializes the LLVM RTTI mechanism for SVals.
After this change, we can use the well-known `isa`, `cast`, `dyn_cast`.
Examples:
// SVal V = ...;
// Loc MyLoc = ...;
bool IsInteresting = isa<loc::MemRegionVal, loc::GotoLabel>(MyLoc);
auto MRV = cast<loc::MemRegionVal>(MyLoc);
Optional<loc::MemRegionVal> MaybeMRV = dyn_cast<loc::MemRegionVal>(V)
The current `SVal::getAs` and `castAs` member functions are redundant at
this point, but I believe that they are still handy.
The member function version is terse and reads left-to-right, which IMO
is a great plus. However, we should probably add a variadic `isa` member
function version to have the same casting API in both cases.
Thanks for the extensive TMP help @bzcheeseman!
Reviewed By: bzcheeseman
Differential Revision: https://reviews.llvm.org/D125709
I'm trying to remove unused options from the `Analyses.def` file, then
merge the rest of the useful options into the `AnalyzerOptions.def`.
Then make sure one can set these by an `-analyzer-config XXX=YYY` style
flag.
Then surface the `-analyzer-config` to the `clang` frontend;
After all of this, we can pursue the tablegen approach described
https://discourse.llvm.org/t/rfc-tablegen-clang-static-analyzer-engine-options-for-better-documentation/61488
In this patch, I'm proposing flag deprecations.
We should support deprecated analyzer flags for exactly one release. In
this case I'm planning to drop this flag in `clang-16`.
In the clang frontend, now we won't pass this option to the cc1
frontend, rather emit a warning diagnostic reminding the users about
this deprecated flag, which will be turned into error in clang-16.
Unfortunately, I had to remove all the tests referring to this flag,
causing a mass change. I've also added a test for checking this warning.
I've seen that `scan-build` also uses this flag, but I think we should
remove that part only after we turn this into a hard error.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D126215
I'm trying to remove unused options from the `Analyses.def` file, then
merge the rest of the useful options into the `AnalyzerOptions.def`.
Then make sure one can set these by an `-analyzer-config XXX=YYY` style
flag.
Then surface the `-analyzer-config` to the `clang` frontend;
After all of this, we can pursue the tablegen approach described
https://discourse.llvm.org/t/rfc-tablegen-clang-static-analyzer-engine-options-for-better-documentation/61488
In this patch, I'm proposing flag deprecations.
We should support deprecated analyzer flags for exactly one release. In
this case I'm planning to drop this flag in `clang-16`.
In the clang frontend, now we won't pass this option to the cc1
frontend, rather emit a warning diagnostic reminding the users about
this deprecated flag, which will be turned into error in clang-16.
Unfortunately, I had to remove all the tests referring to this flag,
causing a mass change. I've also added a test for checking this warning.
I've seen that `scan-build` also uses this flag, but I think we should
remove that part only after we turn this into a hard error.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D126215
I've faced crashes in the past multiple times when some
`check::EndAnalysis` callback caused some crash.
It's really anoying that it doesn't tell which function triggered this
callback.
This patch adds the well-known trace for that situation as well.
Example:
1. <eof> parser at end of file
2. While analyzing stack:
#0 Calling test11
Note that this does not have tests.
I've considered `unittests` for this purpose, by using the
`ASSERT_DEATH()` similarly how we check double eval called functions in
`ConflictingEvalCallsTest.cpp`, however, that the testsuite won't invoke
the custom handlers. Only the message of the `llvm_unreachable()` will
be printed. Consequently, it's not applicable for us testing this
feature.
I've also considered using an end-to-end LIT test for this.
For that, we would need to somehow overload the `clang_analyzer_crash()`
`ExprInspection` handler, to get triggered by other events than the
`EvalCall`. I'm not saying that we could not come up with a generic way
of causing crash in a specific checker callback, but I'm not sure if
that would worth the effort.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D127389
Depends on D126560. `getKnownValue` has been changed by the parent patch
in a way that simplification was removed. This is not correct when the
function is called by the Checkers. Thus, a new internal function is
introduced, `getConstValue`, which simply queries the constraint manager.
This `getConstValue` is used internally in the `SimpleSValBuilder` when a
binop is evaluated, this way we avoid the recursion into the `Simplifier`.
Differential Revision: https://reviews.llvm.org/D127285
A crash was seen in CastValueChecker due to a null pointer dereference.
The fix uses QualType::getAsString to avoid the null dereference
when a CXXRecordDecl cannot be obtained. A small reproducer is added,
and cast value notes LITs are updated for the new debug messages.
Reviewed By: steakhal
Differential Revision: https://reviews.llvm.org/D127105
Aligned with the measures we had in D124674, this condition seems to be
unlikely.
Nevertheless, I've made some new measurments with stats just for this,
and data confirms this is indeed unlikely.
Differential Revision: https://reviews.llvm.org/D127190
Assume functions might recurse (see `reAssume` or `tryRearrange`).
During the recursion, the State might not change anymore, that means we
reached a fixpoint. In this patch, we avoid infinite recursion of assume
calls by checking already visited States on the stack of assume function
calls. This patch renders the previous "workaround" solution (D47155)
unnecessary. Note that this is not an NFC patch. If we were to limit the
maximum stack depth of the assume calls to 1 then would it be equivalent
with the previous solution in D47155.
Additionally, in D113753, we simplify the symbols right at the beginning
of evalBinOpNN. So, a call to `simplifySVal` in `getKnownValue` (added
in D51252) is no longer needed.
Fixes https://github.com/llvm/llvm-project/issues/55851
Differential Revision: https://reviews.llvm.org/D126560
I'm also hoisting common code from the existing specializations into a
common trait impl to reduce code duplication.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D126801
Make the SimpleSValBuilder to be able to look up and use a constraint
for an operand of a SymbolCast, when the operand is constrained to a
const value.
This part of the SValBuilder is responsible for constant folding. We
need this constant folding, so the engine can work with less symbols,
this way it can be more efficient. Whenever a symbol is constrained with
a constant then we substitute the symbol with the corresponding integer.
If a symbol is constrained with a range, then the symbol is kept and we
fall-back to use the range based constraint manager, which is not that
efficient. This patch is the natural extension of the existing constant
folding machinery with the support of SymbolCast symbols.
Differential Revision: https://reviews.llvm.org/D126481
This reverts commit 3988bd1398.
Did not build on this bot:
https://lab.llvm.org/buildbot#builders/215/builds/6372
/usr/include/c++/9/bits/predefined_ops.h:177:11: error: no match for call to
‘(llvm::less_first) (std::pair<long unsigned int, llvm::bolt::BinaryBasicBlock*>&, const std::pair<long unsigned int, std::nullptr_t>&)’
177 | { return bool(_M_comp(*__it, __val)); }
One could reuse this functor instead of rolling out your own version.
There were a couple other cases where the code was similar, but not
quite the same, such as it might have an assertion in the lambda or other
constructs. Thus, I've not touched any of those, as it might change the
behavior in some way.
As per https://discourse.llvm.org/t/submitting-simple-nfc-patches/62640/3?u=steakhal
Chris Lattner
> LLVM intentionally has a “yes, you can apply common sense judgement to
> things” policy when it comes to code review. If you are doing mechanical
> patches (e.g. adopting less_first) that apply to the entire monorepo,
> then you don’t need everyone in the monorepo to sign off on it. Having
> some +1 validation from someone is useful, but you don’t need everyone
> whose code you touch to weigh in.
Differential Revision: https://reviews.llvm.org/D126068
This patch annotates the most important analyzer function APIs.
Also adds a couple of assertions for uncovering any potential issues
earlier in the constructor; in those cases, the member functions were
already dereferencing the members unconditionally anyway.
Measurements showed no performance impact, nor crashes.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D126198