To make uses of the deprecated constructor easier to spot, and to
ensure that no new uses are introduced, rename it to
Address::deprecated().
While doing the rename, I've filled in element types in cases
where it was relatively obvious, but we're still left with 135
calls to the deprecated constructor.
This patch removes the assumption propagation that was added in D110655
primarily to get assumption informatino on opaque call sites for
optimizations. The analysis done in D111445 allows us to do this more
intelligently in the back-end.
Depends on D111445
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D111463
This patch adds OpenMP assumption attributes to call sites in applicable
regions. Currently this applies the caller's assumption attributes to
any calls contained within it. So, if a call occurs inside an OpenMP
assumes region to a function outside that region, we will assume that
call respects the assumptions. This is primarily useful for inline
assembly calls used heavily in the OpenMP GPU device runtime, which
allows us to then make judgements about what the ASM will do.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D110655
As it was discovered in post-commit feedback
for 0aa0458f14,
we handle thunks incorrectly, and end up annotating
their this/return with attributes that are valid
for their callees, not for thunks themselves.
While it would be good to fix this properly,
and keep annotating them on thunks,
i've tried doing that in https://reviews.llvm.org/D100388
with little success, and the patch is stuck for a month now.
So for now, as a stopgap measure, subj.
Thanks to D77248, we can bypass the use of stubs altogether and use PLT
relocations if they are available for the target. LLVM and LLD support the
R_AARCH64_PLT32 relocation, so we can also guarantee a static PLT relocation on AArch64.
Not emitting these stubs saves a lot of extra binary size.
Differential Revision: https://reviews.llvm.org/D83812
Add a Visited set to avoid repeatedly processing the same base classes
in complex class hierarchies. This cut down the compile time of one
source file from >12min to ~1min.
Differential Revision: https://reviews.llvm.org/D91676
thunk's return value slot directly when the return type is an aggregate
instead of doing so via a temporary
This fixes PR45997 (https://bugs.llvm.org/show_bug.cgi?id=45997), which
is caused by a bug that has existed since we started passing and
returning C++ structs with ObjC strong pointer members (see
https://reviews.llvm.org/D44908) or structs annotated with trivial_abi
directly.
rdar://problem/63740936
Differential Revision: https://reviews.llvm.org/D82513
This patch contains all of the clang changes from D72959.
- Generalize the relative vtables ABI such that it can be used by other targets.
- Add an enum VTableComponentLayout which controls whether components in the
vtable should be pointers to other structs or relative offsets to those structs.
Other ABIs can change this enum to restructure how components in the vtable
are laid out/accessed.
- Add methods to ConstantInitBuilder for inserting relative offsets to a
specified position in the aggregate being constructed.
- Fix failing tests under new PM and ASan and MSan issues.
See D72959 for background info.
Differential Revision: https://reviews.llvm.org/D77592
This reverts commit 2e009dbcb3.
Reverting since there were some test failures on buildbots that used the
new pass manager. ASan and MSan are also finding some bugs in this that
I'll need to address.
This patch contains all of the clang changes from D72959.
- Generalize the relative vtables ABI such that it can be used by other targets.
- Add an enum VTableComponentLayout which controls whether components in the
vtable should be pointers to other structs or relative offsets to those structs.
Other ABIs can change this enum to restructure how components in the vtable
are laid out/accessed.
- Add methods to ConstantInitBuilder for inserting relative offsets to a
specified position in the aggregate being constructed.
See D72959 for background info.
Differential Revision: https://reviews.llvm.org/D77592
FinishThunk, and the invariant of setting and then unsetting
CurCodeDecl, was added in 7f416cc426 (2015). The invariant didn't
exist when I added this musttail codepath in ab2090d107 (2014).
Recently in 28328c3771, I started using this codepath on non-Windows
platforms, and users reported problems during release testing (PR44987).
The issue was already present for users of EH on i686-windows-msvc, so I
added a test for that case as well.
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D76444
This restores 59733525d3 (D71913), along
with bot fix 19c76989bb.
The bot failure should be fixed by D73418, committed as
af954e441a.
I also added a fix for non-x86 bot failures by requiring x86 in new test
lld/test/ELF/lto/devirt_vcall_vis_public.ll.
Summary:
Third part in series to support Safe Whole Program Devirtualization
Enablement, see RFC here:
http://lists.llvm.org/pipermail/llvm-dev/2019-December/137543.html
This patch adds type test metadata under -fwhole-program-vtables,
even for classes without hidden visibility. It then changes WPD to skip
devirtualization for a virtual function call when any of the compatible
vtables has public vcall visibility.
Additionally, internal LLVM options as well as lld and gold-plugin
options are added which enable upgrading all public vcall visibility
to linkage unit (hidden) visibility during LTO. This enables the more
aggressive WPD to kick in based on LTO time knowledge of the visibility
guarantees.
Support was added to all flavors of LTO WPD (regular, hybrid and
index-only), and to both the new and old LTO APIs.
Unfortunately it was not simple to split the first and second parts of
this part of the change (the unconditional emission of type tests and
the upgrading of the vcall visiblity) as I needed a way to upgrade the
public visibility on legacy WPD llvm assembly tests that don't include
linkage unit vcall visibility specifiers, to avoid a lot of test churn.
I also added a mechanism to LowerTypeTests that allows dropping type
test assume sequences we now aggressively insert when we invoke
distributed ThinLTO backends with null indexes, which is used in testing
mode, and which doesn't invoke the normal ThinLTO backend pipeline.
Depends on D71907 and D71911.
Reviewers: pcc, evgeny777, steven_wu, espindola
Subscribers: emaste, Prazek, inglorion, arichardson, hiraditya, MaskRay, dexonsmith, dang, davidxl, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71913
Summary:
First patch to support Safe Whole Program Devirtualization Enablement,
see RFC here: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137543.html
Always emit !vcall_visibility metadata under -fwhole-program-vtables,
and not just for -fvirtual-function-elimination. The vcall visibility
metadata will (in a subsequent patch) be used to communicate to WPD
which vtables are safe to devirtualize, and we will optionally convert
the metadata to hidden visibility at link time. Subsequent follow on
patches will help enable this by adding vcall_visibility metadata to the
ThinLTO summaries, and always emit type test intrinsics under
-fwhole-program-vtables (and not just for vtables with hidden
visibility).
In order to do this safely with VFE, since for VFE all vtable loads must
be type checked loads which will no longer be the case, this patch adds
a new "Virtual Function Elim" module flag to communicate to GlobalDCE
whether to perform VFE using the vcall_visibility metadata.
One additional advantage of using the vcall_visibility metadata to drive
more WPD at LTO link time is that we can use the same mechanism to
enable more aggressive VFE at LTO link time as well. The link time
option proposed in the RFC will convert vcall_visibility metadata to
hidden (aka linkage unit visibility), which combined with
-fvirtual-function-elimination will allow it to be done more
aggressively at LTO link time under the same conditions.
Reviewers: pcc, ostannard, evgeny777, steven_wu
Subscribers: mehdi_amini, Prazek, hiraditya, dexonsmith, davidxl, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71907
There are no special virtual function handlers (like __cxa_pure_virtual)
defined for NVPTX target, so just emit such functions as null pointers
to prevent issues with linking and unresolved references.
Remove dead virtual functions from vtables with
replaceNonMetadataUsesWith, so that CGProfile metadata gets cleaned up
correctly.
Original commit message:
Currently, it is hard for the compiler to remove unused C++ virtual
functions, because they are all referenced from vtables, which are referenced
by constructors. This means that if the constructor is called from any live
code, then we keep every virtual function in the final link, even if there
are no call sites which can use it.
This patch allows unused virtual functions to be removed during LTO (and
regular compilation in limited circumstances) by using type metadata to match
virtual function call sites to the vtable slots they might load from. This
information can then be used in the global dead code elimination pass instead
of the references from vtables to virtual functions, to more accurately
determine which functions are reachable.
To make this transformation safe, I have changed clang's code-generation to
always load virtual function pointers using the llvm.type.checked.load
intrinsic, instead of regular load instructions. I originally tried writing
this using clang's existing code-generation, which uses the llvm.type.test
and llvm.assume intrinsics after doing a normal load. However, it is possible
for optimisations to obscure the relationship between the GEP, load and
llvm.type.test, causing GlobalDCE to fail to find virtual function call
sites.
The existing linkage and visibility types don't accurately describe the scope
in which a virtual call could be made which uses a given vtable. This is
wider than the visibility of the type itself, because a virtual function call
could be made using a more-visible base class. I've added a new
!vcall_visibility metadata type to represent this, described in
TypeMetadata.rst. The internalization pass and libLTO have been updated to
change this metadata when linking is performed.
This doesn't currently work with ThinLTO, because it needs to see every call
to llvm.type.checked.load in the linkage unit. It might be possible to
extend this optimisation to be able to use the ThinLTO summary, as was done
for devirtualization, but until then that combination is rejected in the
clang driver.
To test this, I've written a fuzzer which generates random C++ programs with
complex class inheritance graphs, and virtual functions called through object
and function pointers of different types. The programs are spread across
multiple translation units and DSOs to test the different visibility
restrictions.
I've also tried doing bootstrap builds of LLVM to test this. This isn't
ideal, because only classes in anonymous namespaces can be optimised with
-fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not
work correctly with -fvisibility=hidden. However, there are only 12 test
failures when building with -fvisibility=hidden (and an unmodified compiler),
and this change does not cause any new failures for either value of
-fvisibility.
On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size
reduction of ~6%, over a baseline compiled with "-O2 -flto
-fvisibility=hidden -fwhole-program-vtables". The best cases are reductions
of ~14% in 450.soplex and 483.xalancbmk, and there are no code size
increases.
I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which
show a geomean size reduction of ~3%, again with no size increases.
I had hoped that this would have no effect on performance, which would allow
it to awlays be enabled (when using -fwhole-program-vtables). However, the
changes in clang to use the llvm.type.checked.load intrinsic are causing ~1%
performance regression in the C++ parts of SPEC2006. It should be possible to
recover some of this perf loss by teaching optimisations about the
llvm.type.checked.load intrinsic, which would make it worth turning this on
by default (though it's still dependent on -fwhole-program-vtables).
Differential revision: https://reviews.llvm.org/D63932
llvm-svn: 375094
Currently, it is hard for the compiler to remove unused C++ virtual
functions, because they are all referenced from vtables, which are referenced
by constructors. This means that if the constructor is called from any live
code, then we keep every virtual function in the final link, even if there
are no call sites which can use it.
This patch allows unused virtual functions to be removed during LTO (and
regular compilation in limited circumstances) by using type metadata to match
virtual function call sites to the vtable slots they might load from. This
information can then be used in the global dead code elimination pass instead
of the references from vtables to virtual functions, to more accurately
determine which functions are reachable.
To make this transformation safe, I have changed clang's code-generation to
always load virtual function pointers using the llvm.type.checked.load
intrinsic, instead of regular load instructions. I originally tried writing
this using clang's existing code-generation, which uses the llvm.type.test
and llvm.assume intrinsics after doing a normal load. However, it is possible
for optimisations to obscure the relationship between the GEP, load and
llvm.type.test, causing GlobalDCE to fail to find virtual function call
sites.
The existing linkage and visibility types don't accurately describe the scope
in which a virtual call could be made which uses a given vtable. This is
wider than the visibility of the type itself, because a virtual function call
could be made using a more-visible base class. I've added a new
!vcall_visibility metadata type to represent this, described in
TypeMetadata.rst. The internalization pass and libLTO have been updated to
change this metadata when linking is performed.
This doesn't currently work with ThinLTO, because it needs to see every call
to llvm.type.checked.load in the linkage unit. It might be possible to
extend this optimisation to be able to use the ThinLTO summary, as was done
for devirtualization, but until then that combination is rejected in the
clang driver.
To test this, I've written a fuzzer which generates random C++ programs with
complex class inheritance graphs, and virtual functions called through object
and function pointers of different types. The programs are spread across
multiple translation units and DSOs to test the different visibility
restrictions.
I've also tried doing bootstrap builds of LLVM to test this. This isn't
ideal, because only classes in anonymous namespaces can be optimised with
-fvisibility=default, and some parts of LLVM (plugins and bugpoint) do not
work correctly with -fvisibility=hidden. However, there are only 12 test
failures when building with -fvisibility=hidden (and an unmodified compiler),
and this change does not cause any new failures for either value of
-fvisibility.
On the 7 C++ sub-benchmarks of SPEC2006, this gives a geomean code-size
reduction of ~6%, over a baseline compiled with "-O2 -flto
-fvisibility=hidden -fwhole-program-vtables". The best cases are reductions
of ~14% in 450.soplex and 483.xalancbmk, and there are no code size
increases.
I've also run this on a set of 8 mbed-os examples compiled for Armv7M, which
show a geomean size reduction of ~3%, again with no size increases.
I had hoped that this would have no effect on performance, which would allow
it to awlays be enabled (when using -fwhole-program-vtables). However, the
changes in clang to use the llvm.type.checked.load intrinsic are causing ~1%
performance regression in the C++ parts of SPEC2006. It should be possible to
recover some of this perf loss by teaching optimisations about the
llvm.type.checked.load intrinsic, which would make it worth turning this on
by default (though it's still dependent on -fwhole-program-vtables).
Differential revision: https://reviews.llvm.org/D63932
llvm-svn: 374539
The static analyzer is warning about potential null dereferences, but we should be able to use castAs<FunctionProtoType> directly and if not assert will fire for us.
llvm-svn: 373398
This avoids cloning variadic virtual methods when the target supports
musttail and the return type is not covariant. I think we never
implemented this previously because it doesn't handle the covariant
case. But, in the MS ABI, there are some cases where vtable thunks must
be emitted even when the variadic method defintion is not available, so
it looks like we need to implement this. Do it for both ABIs, since it's
a nice size improvement and simplification for Itanium.
Emit an error when emitting thunks for variadic methods with a covariant
return type. This case is essentially not implementable unless the ABI
provides a way to perfectly forward variadic arguments without a tail
call.
Fixes PR43173.
Differential Revision: https://reviews.llvm.org/D67028
llvm-svn: 371269
We must only set the construction vtable visibility after we create the
vtable initializer, otherwise the global value will be treated as
declaration rather than definition and the visibility won't be set.
Differential Revision: https://reviews.llvm.org/D58010
llvm-svn: 353742
Emit{Nounwind,}RuntimeCall{,OrInvoke} have been modified to take a
FunctionCallee as an argument, and CreateRuntimeFunction has been
modified to return a FunctionCallee. All callers have been updated.
Additionally, CreateBuiltinFunction is removed, as it was redundant
with CreateRuntimeFunction after some previous changes.
Differential Revision: https://reviews.llvm.org/D57668
llvm-svn: 353184
This argument was added in r254554 in order to support the
pass_object_size attribute. However, in r296076, the attribute's
presence is now also represented in FunctionProtoType's
ExtParameterInfo, and thus it's unnecessary to pass along a separate
FunctionDecl.
The functions modified are:
RequiredArgs::forPrototype{,Plus}, and
CodeGenTypes::ConvertFunctionType.
After this, it's also (again) unnecessary to have a separate
ConvertFunctionType function ConvertType, so convert callers back to
the latter, leaving the former as an internal helper function.
llvm-svn: 352946
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
https://reviews.llvm.org/D54862 removed the usages of `ASTContext&` from
within the `CXXMethodDecl::getThisType` method. Remove the parameter
altogether, as well as all usages of it. This does not result in any
functional change because the parameter was unused since
https://reviews.llvm.org/D54862.
Test Plan: check-clang
Reviewers: akyrtzi, mikael
Reviewed By: mikael
Subscribers: mehdi_amini, dexonsmith, cfe-commits
Differential Revision: https://reviews.llvm.org/D56509
llvm-svn: 350914
Thunks that return member pointers via sret are broken due to using temporary
storage for the return value on the stack and then passing that pointer to a
tail call, violating the rule that a tail call can't access allocas in the
caller (see bug).
Since r90526, we put aggregate return values directly in the sret slot, but
this doesn't apply to member pointers which are considered scalar.
Unless I'm missing something subtle, we should be able to always use the sret
slot directly for indirect return values.
Differential revision: https://reviews.llvm.org/D55371
llvm-svn: 348569
As suggested by Richard Smith, and initially put up for review here:
https://reviews.llvm.org/D53341, this patch removes a hack that was used
to ensure that proper target-feature lists were used when emitting
cpu-dispatch (and eventually, target-clones) implementations. As a part
of this, the GlobalDecl object is proliferated to a bunch more
locations.
Originally, this was put up for review (see above) to get acceptance on
the approach, though discussion with Richard in San Diego showed he
approved of the approach taken here. Thus, I believe this is acceptable
for Review-After-commit
Differential Revision: https://reviews.llvm.org/D53341
Change-Id: I0a0bd673340d334d93feac789d653e03d9f6b1d5
llvm-svn: 346757
Previously the alignment on the newly created rtti/typeinfo data was largely
not set, meaning that DataLayout::getPreferredAlignment was free to overalign
it to 16 bytes. This causes unnecessary code bloat.
Differential Revision: https://reviews.llvm.org/D51416
llvm-svn: 342053
After refactoring DbgInfoIntrinsic class hierarchy, we use
DbgVariableIntrinsic as the base class of variable debug info.
In resolveTopLevelMetadata() in CGVTables.cpp, we only care about
dbg.value, so we try to cast the instructions to DbgVariableIntrinsic
before resolving variables.
Differential Revision: https://reviews.llvm.org/D50226
llvm-svn: 338985
Similarly to CFI on virtual and indirect calls, this implementation
tries to use program type information to make the checks as precise
as possible. The basic way that it works is as follows, where `C`
is the name of the class being defined or the target of a call and
the function type is assumed to be `void()`.
For virtual calls:
- Attach type metadata to the addresses of function pointers in vtables
(not the functions themselves) of type `void (B::*)()` for each `B`
that is a recursive dynamic base class of `C`, including `C` itself.
This type metadata has an annotation that the type is for virtual
calls (to distinguish it from the non-virtual case).
- At the call site, check that the computed address of the function
pointer in the vtable has type `void (C::*)()`.
For non-virtual calls:
- Attach type metadata to each non-virtual member function whose address
can be taken with a member function pointer. The type of a function
in class `C` of type `void()` is each of the types `void (B::*)()`
where `B` is a most-base class of `C`. A most-base class of `C`
is defined as a recursive base class of `C`, including `C` itself,
that does not have any bases.
- At the call site, check that the function pointer has one of the types
`void (B::*)()` where `B` is a most-base class of `C`.
Differential Revision: https://reviews.llvm.org/D47567
llvm-svn: 335569
Found via codespell -q 3 -I ../clang-whitelist.txt
Where whitelist consists of:
archtype
cas
classs
checkk
compres
definit
frome
iff
inteval
ith
lod
methode
nd
optin
ot
pres
statics
te
thru
Patch by luzpaz! (This is a subset of D44188 that applies cleanly with a few
files that have dubious fixes reverted.)
Differential revision: https://reviews.llvm.org/D44188
llvm-svn: 329399
Summary:
The following class hierarchy requires that we be able to emit a
this-adjusting thunk for B::foo in C's vftable:
struct Incomplete;
struct A {
virtual A* foo(Incomplete p) = 0;
};
struct B : virtual A {
void foo(Incomplete p) override;
};
struct C : B { int c; };
This TU is valid, but lacks a definition of 'Incomplete', which makes it
hard to build a thunk for the final overrider, B::foo.
Before this change, Clang gives up attempting to emit the thunk, because
it assumes that if the parameter types are incomplete, it must be
emitting the thunk for optimization purposes. This is untrue for the MS
ABI, where the implementation of B::foo has no idea what thunks C's
vftable may require. Clang needs to emit the thunk without necessarily
having access to the complete prototype of foo.
This change makes Clang emit a musttail variadic call when it needs such
a thunk. I call these "unprototyped" thunks, because they only prototype
the "this" parameter, which must always come first in the MS C++ ABI.
These thunks work, but they create ugly LLVM IR. If the call to the
thunk is devirtualized, it will be a call to a bitcast of a function
pointer. Today, LLVM cannot inline through such a call, but I want to
address that soon, because we also use this pattern for virtual member
pointer thunks.
This change also implements an old FIXME in the code about reusing the
thunk's computed CGFunctionInfo as much as possible. Now we don't end up
computing the thunk's mangled name and arranging it's prototype up to
around three times.
Fixes PR25641
Reviewers: rjmccall, rsmith, hans
Subscribers: Prazek, cfe-commits
Differential Revision: https://reviews.llvm.org/D45112
llvm-svn: 329009
r327219 added wrappers to std::sort which randomly shuffle the container before
sorting. This will help in uncovering non-determinism caused due to undefined
sorting order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of
std::sort.
llvm-svn: 328636