If dominator tree is not calculated or is invalidated, set corresponding
pointer in the pass state to nullptr. Such pointer value will indicate
that operations with dominator tree are not allowed. In particular, it
allows to skip verification for such pass state. The dominator tree is
not calculated if the machine dominator pass was skipped, it occures in
the case of entities with linkage available_externally.
The change fixes some test fails observed when expensive checks
are enabled.
Differential Revision: https://reviews.llvm.org/D29280
llvm-svn: 296742
Surprisingly, one of the three interference checks in LiveRegMatrix was
using the main live range instead of the apropriate subregister range
resulting in unnecessarily conservative results.
llvm-svn: 296722
Summary:
This can be used to optimize large multiplications after legalization.
Depends on D29565
Reviewers: mkuper, spatel, RKSimon, zvi, bkramer, aaboud, craig.topper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29587
llvm-svn: 296711
Until now, we've had to use -global-isel to enable GISel. But using
that on other targets that don't support it will result in an abort, as we
can't build a full pipeline.
Additionally, we want to experiment with enabling GISel by default for
some targets: we can't just enable GISel by default, even among those
target that do have some support, because the level of support varies.
This first step adds an override for the target to explicitly define its
level of support. For AArch64, do that using
a new command-line option (I know..):
-aarch64-enable-global-isel-at-O=<N>
Where N is the opt-level below which GISel should be used.
Default that to -1, so that we still don't enable GISel anywhere.
We're not there yet!
While there, remove a couple LLVM_UNLIKELYs. Building the pipeline is
such a cold path that in practice that shouldn't matter at all.
llvm-svn: 296710
This is part of the ongoing attempt to improve select codegen for all targets and select
canonicalization in IR (see D24480 for more background). The transform is a subset of what
is done in InstCombine's FoldOpIntoSelect().
I first noticed a regression in the x86 avx512-insert-extract.ll tests with a patch that
hopes to convert more selects to basic math ops. This appears to be a general missing DAG
transform though, so I added tests for all standard binops in rL296621
(PowerPC was chosen semi-randomly; it has scripted FileCheck support, but so do ARM and x86).
The poor output for "sel_constants_shl_constant" is tracked with:
https://bugs.llvm.org/show_bug.cgi?id=32105
Differential Revision: https://reviews.llvm.org/D30502
llvm-svn: 296699
Take DW_FORM_implicit_const attribute value into account when profiling
DIEAbbrevData.
Currently if we have two similar types with implicit_const attributes and
different values we end up with only one abbrev in .debug_abbrev section.
For example consider two structures: S1 with implicit_const attribute ATTR
and value VAL1 and S2 with implicit_const ATTR and value VAL2.
The .debug_abbrev section will contain only 1 related record:
[N] DW_TAG_structure_type DW_CHILDREN_yes
DW_AT_ATTR DW_FORM_implicit_const VAL1
// ....
This is incorrect as struct S2 (with VAL2) will use abbrev record with VAL1.
With this patch we will have two different abbreviations here:
[N] DW_TAG_structure_type DW_CHILDREN_yes
DW_AT_ATTR DW_FORM_implicit_const VAL1
// ....
[M] DW_TAG_structure_type DW_CHILDREN_yes
DW_AT_ATTR DW_FORM_implicit_const VAL2
// ....
llvm-svn: 296691
- We only need the information from the base class, not the additional
details in the LiveInterval class.
- Spread more `const`
- Some code cleanup
llvm-svn: 296684
Summary:
Avoids tons of prologue boilerplate when arguments are passed in memory
and left in memory. This can happen in a debug build or in a release
build when an argument alloca is escaped. This will dramatically affect
the code size of x86 debug builds, because X86 fast isel doesn't handle
arguments passed in memory at all. It only handles the x86_64 case of up
to 6 basic register parameters.
This is implemented by analyzing the entry block before ISel to identify
copy elision candidates. A copy elision candidate is an argument that is
used to fully initialize an alloca before any other possibly escaping
uses of that alloca. If an argument is a copy elision candidate, we set
a flag on the InputArg. If the the target generates loads from a fixed
stack object that matches the size and alignment requirements of the
alloca, the SelectionDAG builder will delete the stack object created
for the alloca and replace it with the fixed stack object. The load is
left behind to satisfy any remaining uses of the argument value. The
store is now dead and is therefore elided. The fixed stack object is
also marked as mutable, as it may now be modified by the user, and it
would be invalid to rematerialize the initial load from it.
Supersedes D28388
Fixes PR26328
Reviewers: chandlerc, MatzeB, qcolombet, inglorion, hans
Subscribers: igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D29668
llvm-svn: 296683
This patch adds a MachineSSA pass that coalesces blocks that branch
on the same condition.
Committing on behalf of Lei Huang.
Differential Revision: https://reviews.llvm.org/D28249
llvm-svn: 296670
Add check that deleted nodes do not get added to worklist. This can
occur when a node's operand is simplified to an existing node.
This fixes PR32108.
Reviewers: jyknight, hfinkel, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30506
llvm-svn: 296668
DWARF may define a default lower-bound for arrays in languages defined
in a particular DWARF version. But the logic to suppress an
unnecessary lower-bound attribute was looking at the hard-coded
default DWARF version, not the version that had been requested.
Also updated the list with all languages defined in DWARF v5.
Differential Revision: http://reviews.llvm.org/D30484
llvm-svn: 296652
Resubmit r295336 after the bug with non-zero offset patterns on BE targets is fixed (r296336).
Support {a|s}ext, {a|z|s}ext load nodes as a part of load combine patters.
Reviewed By: filcab
Differential Revision: https://reviews.llvm.org/D29591
llvm-svn: 296651
When SDAGISel (top-down) selects a tail-call, it skips the remainder
of the block.
If, before that, FastISel (bottom-up) selected some of the (no-op) next
few instructions, we can end up with dead instructions following the
terminator (selected by SDAGISel).
We need to erase them, as we know they aren't necessary (in addition to
being incorrect).
We already do this when FastISel falls back on the tail-call itself.
Also remove the FastISel-emitted code if we fallback on the
instructions between the tail-call and the return.
llvm-svn: 296552
Iterating on the use-list we're modifying doesn't work: after the first
iteration, the use-list iterator will point to a MachineOperand
referencing the new register. This caused us to skip the other uses to
replace.
Instead, use MRI.replaceRegWith(), which accounts for this behavior.
llvm-svn: 296551
Requesting DWARF v5 will now get you the new compile-unit and
type-unit headers. llvm-dwarfdump will also recognize them.
Differential Revision: http://reviews.llvm.org/D30206
llvm-svn: 296514
This recovers a test case that was severely broken by r296476, my making sure we don't create ADD/ADC that loads and stores when there is also a flag dependency.
llvm-svn: 296486
Stack Smash Protection is not completely free, so in hot code, the overhead it causes can cause performance issues. By adding diagnostic information for which functions have SSP and why, a user can quickly determine what they can do to stop SSP being applied to a specific hot function.
This change adds a remark that is reported by the stack protection code when an instruction or attribute is encountered that causes SSP to be applied.
Patch by: James Henderson
Differential Revision: https://reviews.llvm.org/D29023
llvm-svn: 296483
Recommiting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 296476
Summary:
This will allow future patches to inspect the details of the LLT. The implementation is now split between
the Support and CodeGen libraries to allow TableGen to use this class without introducing layering concerns.
Thanks to Ahmed Bougacha for finding a reasonable way to avoid the layering issue and providing the version of this patch without that problem.
Reviewers: t.p.northover, qcolombet, rovka, aditya_nandakumar, ab, javed.absar
Subscribers: arsenm, nhaehnle, mgorny, dberris, llvm-commits, kristof.beyls
Differential Revision: https://reviews.llvm.org/D30046
llvm-svn: 296474
Summary:
With this change ImplicitNullCheck optimization uses alias analysis
and can use load/store memory access for implicit null check if there
are other load/store before but memory accesses do not alias.
Patch by Serguei Katkov!
Reviewers: sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30331
llvm-svn: 296440
This is a patch for the outliner described in the RFC at:
http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
The outliner is a code-size reduction pass which works by finding
repeated sequences of instructions in a program, and replacing them with
calls to functions. This is useful to people working in low-memory
environments, where sacrificing performance for space is acceptable.
This adds an interprocedural outliner directly before printing assembly.
For reference on how this would work, this patch also includes X86
target hooks and an X86 test.
The outliner is run like so:
clang -mno-red-zone -mllvm -enable-machine-outliner file.c
Patch by Jessica Paquette<jpaquette@apple.com>!
rdar://29166825
Differential Revision: https://reviews.llvm.org/D26872
llvm-svn: 296418
Splitting critical edges when one of the source edges is an indirectbr
is hard in general (because it requires changing the memory the indirectbr
reads). But if a block only has a single indirectbr predecessor (which is
the common case), we can simulate splitting that edge by splitting
the destination block, and retargeting the *direct* branches.
This is motivated by the use of computed gotos in python 2.7: PyEval_EvalFrame()
ends up using an indirect branch with ~100 successors, and passing a constant to
each of those. Since MachineSink can't break indirect critical edges on demand
(and doing this in MIR doesn't look feasible), this causes us to emit about ~100
defs of registers containing constants, which we in the predecessor block, where
only one of those constants is used in each successor. So, at each computed goto,
we needlessly spill about a 100 constants to stack. The end result is that a
clang-compiled python interpreter can be about ~2.5x slower on a simple python
reduction loop than a gcc-compiled interpreter.
Differential Revision: https://reviews.llvm.org/D29916
llvm-svn: 296416
Before the endianness was specified on each call to read
or write of the StreamReader / StreamWriter, but in practice
it's extremely rare for streams to have data encoded in
multiple different endiannesses, so we should optimize for the
99% use case.
This makes the code cleaner and more general, but otherwise
has NFC.
llvm-svn: 296415
This was reverted because it was breaking some builds, and
because of incorrect error code usage. Since the CL was
large and contained many different things, I'm resubmitting
it in pieces.
This portion is NFC, and consists of:
1) Renaming classes to follow a consistent naming convention.
2) Fixing the const-ness of the interface methods.
3) Adding detailed doxygen comments.
4) Fixing a few instances of passing `const BinaryStream& X`. These
are now passed as `BinaryStreamRef X`.
llvm-svn: 296394
DAGCombiner already supports peeking thorough shuffles to improve vector element extraction, but legalization often leaves us in situations where we need to extract vector elements after shuffles have already been lowered.
This patch adds support for VECTOR_EXTRACT_ELEMENT/PEXTRW/PEXTRB instructions to attempt to handle target shuffles as well. I've covered some basic scenarios including handling shuffle mask scaling and the implicit zero-extension of PEXTRW/PEXTRB, there is more that could be done here (that I've mentioned in TODOs) but I haven't found many cases where its worth it.
Differential Revision: https://reviews.llvm.org/D30176
llvm-svn: 296381
Summary: Existing implementation of duplicateSimpleBB function drops DebugLoc metadata of branch instructions during the transformation. This patch addresses this issue by making newly created branch instructions to keep the metadata of replaced branch instructions.
Reviewers: qcolombet, craig.topper, aprantl, MatzeB, sanjoy, dblaikie
Reviewed By: dblaikie
Subscribers: dblaikie, llvm-commits
Differential Revision: https://reviews.llvm.org/D30026
llvm-svn: 296371
This pattern is essentially a i16 load from p+1 address:
%p1.i16 = bitcast i8* %p to i16*
%p2.i8 = getelementptr i8, i8* %p, i64 2
%v1 = load i16, i16* %p1.i16
%v2.i8 = load i8, i8* %p2.i8
%v2 = zext i8 %v2.i8 to i16
%v1.shl = shl i16 %v1, 8
%res = or i16 %v1.shl, %v2
Current implementation would identify %v1 load as the first byte load and would mistakenly emit a i16 load from %p1.i16 address. This patch adds a check that the first byte is loaded from a non-zero offset of the first load address. This way this address can be used as the base address for the combined value. Otherwise just give up combining.
llvm-svn: 296336
Summary:
While collecting operands we make copies of the LiveReg objects which are stored in the LiveRegs array. If the instruction uses the same register multiple times we end up with multiple copies. Later we iterate through the collected list of LiveReg objects and merge DomainValues. In the process of doing this the merge function can change the contents of the original LiveReg object in the LiveRegs array, but not the copies that have been made. So when we get to the second usage of the register we end up seeing a stale copy of the LiveReg object.
To fix this I've stopped copying and now just store a pointer to the original LiveReg object. Another option might be to avoid adding the same register to the Regs array twice, but this approach seemed simpler.
The included test case exposes this bug due to an AVX-512 masked OR instruction using the same register for the passthru operand and one of the inputs to the OR operation.
Fixes PR30284.
Reviewers: RKSimon, stoklund, MatzeB, spatel, myatsina
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30242
llvm-svn: 296260
r296215, "[PDB] General improvements to Stream library."
r296217, "Disable BinaryStreamTest.StreamReaderObject temporarily."
r296220, "Re-enable BinaryStreamTest.StreamReaderObject."
r296244, "[PDB] Disable some tests that are breaking bots."
r296249, "Add static_cast to silence -Wc++11-narrowing."
std::errc::no_buffer_space should be used for OS-oriented errors for socket transmission.
(Seek discussions around llvm/xray.)
I could substitute s/no_buffer_space/others/g, but I revert whole them ATM.
Could we define and use LLVM errors there?
llvm-svn: 296258
Recommiting after fixup of 32-bit aliasing sign offset bug in DAGCombiner.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 296252
This adds various new functionality and cleanup surrounding the
use of the Stream library. Major changes include:
* Renaming of all classes for more consistency / meaningfulness
* Addition of some new methods for reading multiple values at once.
* Full suite of unit tests for reader / writer functionality.
* Full set of doxygen comments for all classes.
* Streams now store their own endianness.
* Fixed some bugs in a few of the classes that were discovered
by the unit tests.
llvm-svn: 296215
This is part of a larger effort to get the Stream code moved
up to Support. I don't want to do it in one large patch, in
part because the changes are so big that it will treat everything
as file deletions and add, losing history in the process.
Aside from that though, it's just a good idea in general to
make small changes.
So this change only changes the names of the Stream related
source files, and applies necessary source fix ups.
llvm-svn: 296211
With the "wasm32-unknown-unknown-wasm" triple, this allows writing out
simple wasm object files, and is another step in a larger series toward
migrating from ELF to general wasm object support. Note that this code
and the binary format itself is still experimental.
llvm-svn: 296190
This reverts commit r296009. It broke one out of tree target and also
does not account for all partial lines added or removed when calculating
PressureDiff.
llvm-svn: 296182
All G_CONSTANTS created by the MachineIRBuilder have an operand of type CImm
(i.e. a ConstantInt), so that's what the selector needs to look for.
llvm-svn: 296176
When we construct addressing modes, we use isNoopAddrSpaceCast to ignore
addrspacecast instructions. Make sure we insert the correct addrspacecast
when we reconstruct the addressing mode.
Differential Revision: https://reviews.llvm.org/D30114
llvm-svn: 296167
Splitting critical edges when one of the source edges is an indirectbr
is hard in general (because it requires changing the memory the indirectbr
reads). But if a block only has a single indirectbr predecessor (which is
the common case), we can simulate splitting that edge by splitting
the destination block, and retargeting the *direct* branches.
This is motivated by the use of computed gotos in python 2.7: PyEval_EvalFrame()
ends up using an indirect branch with ~100 successors, and passing a constant to
each of those. Since MachineSink can't break indirect critical edges on demand
(and doing this in MIR doesn't look feasible), this causes us to emit about ~100
defs of registers containing constants, which we in the predecessor block, where
only one of those constants is used in each successor. So, at each computed goto,
we needlessly spill about a 100 constants to stack. The end result is that a
clang-compiled python interpreter can be about ~2.5x slower on a simple python
reduction loop than a gcc-compiled interpreter.
Differential Revision: https://reviews.llvm.org/D29916
llvm-svn: 296149
The motivation for filling out these select-of-constants cases goes back to D24480,
where we discussed removing an IR fold from add(zext) --> select. And that goes back to:
https://reviews.llvm.org/rL75531https://reviews.llvm.org/rL159230
The idea is that we should always canonicalize patterns like this to a select-of-constants
in IR because that's the smallest IR and the best for value tracking. Note that we currently
do the opposite in some cases (like the cases in *this* patch). Ie, the proposed folds in
this patch already exist in InstCombine today:
https://github.com/llvm-mirror/llvm/blob/master/lib/Transforms/InstCombine/InstCombineSelect.cpp#L1151
As this patch shows, most targets generate better machine code for simple ext/add/not ops
rather than a select of constants. So the follow-up steps to make this less of a patchwork
of special-case folds and missing IR canonicalization:
1. Have DAGCombiner convert any select of constants into ext/add/not ops.
2 Have InstCombine canonicalize in the other direction (create more selects).
Differential Revision: https://reviews.llvm.org/D30180
llvm-svn: 296137
Summary:
This isn't testable for AArch64 by itself so this patch also adds
support for constant immediates in the pattern and physical
register uses in the result.
The new IntOperandMatcher matches the constant in patterns such as
'(set $rd:GPR32, (G_XOR $rs:GPR32, -1))'. It's always safe to fold
immediates into an instruction so this is the first rule that will match
across multiple BB's.
The Renderer hierarchy is responsible for adding operands to the result
instruction. Renderers can copy operands (CopyRenderer) or add physical
registers (in particular %wzr and %xzr) to the result instruction
in any order (OperandMatchers now import the operand names from
SelectionDAG to allow renderers to access any operand). This allows us to
emit the result instruction for:
%1 = G_XOR %0, -1 --> %1 = ORNWrr %wzr, %0
%1 = G_XOR -1, %0 --> %1 = ORNWrr %wzr, %0
although the latter is untested since the matcher/importer has not been
taught about commutativity yet.
Added BuildMIAction which can build new instructions and mutate them where
possible. W.r.t the mutation aspect, MatchActions are now told the name of
an instruction they can recycle and BuildMIAction will emit mutation code
when the renderers are appropriate. They are appropriate when all operands
are rendered using CopyRenderer and the indices are the same as the matcher.
This currently assumes that all operands have at least one matcher.
Finally, this change also fixes a crash in
AArch64InstructionSelector::select() caused by an immediate operand
passing isImm() rather than isCImm(). This was uncovered by the other
changes and was detected by existing tests.
Depends on D29711
Reviewers: t.p.northover, ab, qcolombet, rovka, aditya_nandakumar, javed.absar
Reviewed By: rovka
Subscribers: aemerson, dberris, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D29712
llvm-svn: 296131
Splitting critical edges when one of the source edges is an indirectbr
is hard in general (because it requires changing the memory the indirectbr
reads). But if a block only has a single indirectbr predecessor (which is
the common case), we can simulate splitting that edge by splitting
the destination block, and retargeting the *direct* branches.
This is motivated by the use of computed gotos in python 2.7: PyEval_EvalFrame()
ends up using an indirect branch with ~100 successors, and passing a constant to
each of those. Since MachineSink can't break indirect critical edges on demand
(and doing this in MIR doesn't look feasible), this causes us to emit about ~100
defs of registers containing constants, which we in the predecessor block, where
only one of those constants is used in each successor. So, at each computed goto,
we needlessly spill about a 100 constants to stack. The end result is that a
clang-compiled python interpreter can be about ~2.5x slower on a simple python
reduction loop than a gcc-compiled interpreter.
Differential Revision: https://reviews.llvm.org/D29916
llvm-svn: 296060
We were stopping the translation of the parent block when the
translation of an instruction failed, but we were still trying to
translate the other blocks of the parent function.
Don't do that.
llvm-svn: 296047
Rename ComputedTrellisEdges to ComputedEdges to allow for other methods of
pre-computing edges.
Differential Revision: https://reviews.llvm.org/D30308
llvm-svn: 296018
Having more fine-grained information on the specific construct that
caused us to fallback is valuable for large-scale data collection.
We still have the fallback warning, that's also used for FastISel.
We still need to remove the fallback warning, and teach FastISel to also
emit remarks (it currently has a combination of the warning, stats, and
debug prints: the remarks could unify all three).
The abort-on-fallback path could also be better handled using remarks:
one could imagine a "-Rpass-error", analoguous to "-Werror", which would
promote missed/failed remarks to errors. It's not clear whether that
would be useful for other remarks though, so we're not there yet.
llvm-svn: 296013
If a subreg is used in an instruction it counts as a whole superreg
for the purpose of register pressure calculation. This patch corrects
improper register pressure calculation by examining operand's lane mask.
Differential Revision: https://reviews.llvm.org/D29835
llvm-svn: 296009
Since LoopInfo is not available in machine passes as universally as in IR
passes, using the same approach for OptimizationRemarkEmitter as we did for IR
will run LoopInfo and DominatorTree unnecessarily. (LoopInfo is not used
lazily by ORE.)
To fix this, I am modifying the approach I took in D29836. LazyMachineBFI now
uses its client passes including MachineBFI itself that are available or
otherwise compute them on the fly.
So for example GreedyRegAlloc, since it's already using MBFI, will reuse that
instance. On the other hand, AsmPrinter in Justin's patch will generate DT,
LI and finally BFI on the fly.
(I am of course wondering now if the simplicity of this approach is even
preferable in IR. I will do some experiments.)
Testing is provided by an updated version of D29837 which requires Justin's
patch to bring ORE to the AsmPrinter.
Differential Revision: https://reviews.llvm.org/D30128
llvm-svn: 295996
This just adds the basic skeleton for supporting a new object file format.
All of the actual encoding will be implemented in followup patches.
Differential Revision: https://reviews.llvm.org/D26722
llvm-svn: 295803
Summary:
Rework the code that was sinking/duplicating (icmp and, 0) sequences
into blocks where they were being used by conditional branches to form
more tbz instructions on AArch64. The new code is more general in that
it just looks for 'and's that have all icmp 0's as users, with a target
hook used to select which subset of 'and' instructions to consider.
This change also enables 'and' sinking for X86, where it is more widely
beneficial than on AArch64.
The 'and' sinking/duplicating code is moved into the optimizeInst phase
of CodeGenPrepare, where it can take advantage of the fact the
OptimizeCmpExpression has already sunk/duplicated any icmps into the
blocks where they are used. One minor complication from this change is
that optimizeLoadExt needed to be updated to always mark 'and's it has
determined should be in the same block as their feeding load in the
InsertedInsts set to avoid an infinite loop of hoisting and sinking the
same 'and'.
This change fixes a regression on X86 in the tsan runtime caused by
moving GVNHoist to a later place in the optimization pipeline (see
PR31382).
Reviewers: t.p.northover, qcolombet, MatzeB
Subscribers: aemerson, mcrosier, sebpop, llvm-commits
Differential Revision: https://reviews.llvm.org/D28813
llvm-svn: 295746
- Fix doxygen comments (do not repeat documented name, remove definition
comment if there is already one at the declaration, add \p, ...)
- Add some const modifiers
- Use range based for
llvm-svn: 295688
Summary:
Currently, BranchFolder drops DebugLoc for branch instructions in some places. For example, for the test code attached, the branch instruction of 'entry' block has a DILocation of
```
!12 = !DILocation(line: 6, column: 3, scope: !11)
```
, but this information is gone when then block is lowered because BranchFolder misses it. This patch is a fix for this issue.
Reviewers: qcolombet, aprantl, craig.topper, MatzeB
Reviewed By: aprantl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29902
llvm-svn: 295684
- Adapt MachineBasicBlock::getName() to have the same behavior as the IR
BasicBlock (Value::getName()).
- Add it to lib/CodeGen/CodeGen.cpp::initializeCodeGen so that it is linked in
the CodeGen library.
- MachineRegionInfoPass's name conflicts with RegionInfoPass's name ("region").
- MachineRegionInfo should depend on MachineDominatorTree,
MachinePostDominatorTree and MachineDominanceFrontier instead of their
respective IR versions.
- Since there were no tests for this, add a X86 MIR test.
Patch by Francis Visoiu Mistrih<fvisoiumistrih@apple.com>
llvm-svn: 295518
This fixes PR31381, which caused an assertion and/or invalid debug info.
This affects debug variables that have multiple fragments in the MMI
side (i.e.: in the stack frame) table.
rdar://problem/30571676
llvm-svn: 295486
During legalization we are often creating shuffles (via a build_vector scalarization stage) that are "any_extend_vector_inreg" style masks, and also other masks that are the equivalent of "truncate_vector_inreg" (if we had such a thing).
This patch is an attempt to match these cases to help undo the effects of just leaving shuffle lowering to handle it - which typically means we lose track of the undefined elements of the shuffles resulting in an unnecessary extension+truncation stage for widened illegal types.
The 2011-10-21-widen-cmp.ll regression will be fixed by making SIGN_EXTEND_VECTOR_IN_REG legal in SSE instead of lowering them to X86ISD::VSEXT (PR31712).
Differential Revision: https://reviews.llvm.org/D29454
llvm-svn: 295451
Summary:
This is an issue both with regular and Thin LTO. When we link together
a DICompileUnit that is marked NoDebug (e.g when compiling with -g0
but applying an AutoFDO profile, which requires location tracking
in the compiler) and a DICompileUnit with debug emission enabled,
we can have failures during dwarf debug generation. Specifically,
when we have inlined from the NoDebug compile unit into the debug
compile unit, we can fail during construction of the abstract and
inlined scope DIEs. This is because the SPMap does not include NoDebug
CUs (they are skipped in the debug_compile_units_iterator).
This patch fixes the failures by skipping locations from NoDebug CUs
when extracting lexical scopes.
Reviewers: dblaikie, aprantl
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D29765
llvm-svn: 295384
Resubmit -r295314 with PowerPC and AMDGPU tests updated.
Support {a|s}ext, {a|z|s}ext load nodes as a part of load combine patters.
Reviewed By: filcab
Differential Revision: https://reviews.llvm.org/D29591
llvm-svn: 295336
Support {a|s}ext, {a|z|s}ext load nodes as a part of load combine patters.
Reviewed By: filcab
Differential Revision: https://reviews.llvm.org/D29591
llvm-svn: 295314
For the hard float calling convention, we just use the D registers.
For the soft-fp calling convention, we use the R registers and move values
to/from the D registers by means of G_SEQUENCE/G_EXTRACT. While doing so, we
make sure to honor the endianness of the target, since the CCAssignFn doesn't do
that for us.
For pure soft float targets, we still bail out because we don't support the
libcalls yet.
llvm-svn: 295295
This reverts r294348, which removed support for conditional tail calls
due to the PR above. It fixes the PR by marking live registers as
implicitly used and defined by the now predicated tailcall. This is
similar to how IfConversion predicates instructions.
Differential Revision: https://reviews.llvm.org/D29856
llvm-svn: 295262
Uses a Custom implementation because the slot sizes being a multiple of the
pointer size isn't really universal, even for the architectures that do have a
simple "void *" va_list.
llvm-svn: 295255
Lay out trellis-shaped CFGs optimally.
A trellis of the shape below:
A B
|\ /|
| \ / |
| X |
| / \ |
|/ \|
C D
would be laid out A; B->C ; D by the current layout algorithm. Now we identify
trellises and lay them out either A->C; B->D or A->D; B->C. This scales with an
increasing number of predecessors. A trellis is a a group of 2 or more
predecessor blocks that all have the same successors.
because of this we can tail duplicate to extend existing trellises.
As an example consider the following CFG:
B D F H
/ \ / \ / \ / \
A---C---E---G---Ret
Where A,C,E,G are all small (Currently 2 instructions).
The CFG preserving layout is then A,B,C,D,E,F,G,H,Ret.
The current code will copy C into B, E into D and G into F and yield the layout
A,C,B(C),E,D(E),F(G),G,H,ret
define void @straight_test(i32 %tag) {
entry:
br label %test1
test1: ; A
%tagbit1 = and i32 %tag, 1
%tagbit1eq0 = icmp eq i32 %tagbit1, 0
br i1 %tagbit1eq0, label %test2, label %optional1
optional1: ; B
call void @a()
br label %test2
test2: ; C
%tagbit2 = and i32 %tag, 2
%tagbit2eq0 = icmp eq i32 %tagbit2, 0
br i1 %tagbit2eq0, label %test3, label %optional2
optional2: ; D
call void @b()
br label %test3
test3: ; E
%tagbit3 = and i32 %tag, 4
%tagbit3eq0 = icmp eq i32 %tagbit3, 0
br i1 %tagbit3eq0, label %test4, label %optional3
optional3: ; F
call void @c()
br label %test4
test4: ; G
%tagbit4 = and i32 %tag, 8
%tagbit4eq0 = icmp eq i32 %tagbit4, 0
br i1 %tagbit4eq0, label %exit, label %optional4
optional4: ; H
call void @d()
br label %exit
exit:
ret void
}
here is the layout after D27742:
straight_test: # @straight_test
; ... Prologue elided
; BB#0: # %entry ; A (merged with test1)
; ... More prologue elided
mr 30, 3
andi. 3, 30, 1
bc 12, 1, .LBB0_2
; BB#1: # %test2 ; C
rlwinm. 3, 30, 0, 30, 30
beq 0, .LBB0_3
b .LBB0_4
.LBB0_2: # %optional1 ; B (copy of C)
bl a
nop
rlwinm. 3, 30, 0, 30, 30
bne 0, .LBB0_4
.LBB0_3: # %test3 ; E
rlwinm. 3, 30, 0, 29, 29
beq 0, .LBB0_5
b .LBB0_6
.LBB0_4: # %optional2 ; D (copy of E)
bl b
nop
rlwinm. 3, 30, 0, 29, 29
bne 0, .LBB0_6
.LBB0_5: # %test4 ; G
rlwinm. 3, 30, 0, 28, 28
beq 0, .LBB0_8
b .LBB0_7
.LBB0_6: # %optional3 ; F (copy of G)
bl c
nop
rlwinm. 3, 30, 0, 28, 28
beq 0, .LBB0_8
.LBB0_7: # %optional4 ; H
bl d
nop
.LBB0_8: # %exit ; Ret
ld 30, 96(1) # 8-byte Folded Reload
addi 1, 1, 112
ld 0, 16(1)
mtlr 0
blr
The tail-duplication has produced some benefit, but it has also produced a
trellis which is not laid out optimally. With this patch, we improve the layouts
of such trellises, and decrease the cost calculation for tail-duplication
accordingly.
This patch produces the layout A,C,E,G,B,D,F,H,Ret. This layout does have
back edges, which is a negative, but it has a bigger compensating
positive, which is that it handles the case where there are long strings
of skipped blocks much better than the original layout. Both layouts
handle runs of executed blocks equally well. Branch prediction also
improves if there is any correlation between subsequent optional blocks.
Here is the resulting concrete layout:
straight_test: # @straight_test
; BB#0: # %entry ; A (merged with test1)
mr 30, 3
andi. 3, 30, 1
bc 12, 1, .LBB0_4
; BB#1: # %test2 ; C
rlwinm. 3, 30, 0, 30, 30
bne 0, .LBB0_5
.LBB0_2: # %test3 ; E
rlwinm. 3, 30, 0, 29, 29
bne 0, .LBB0_6
.LBB0_3: # %test4 ; G
rlwinm. 3, 30, 0, 28, 28
bne 0, .LBB0_7
b .LBB0_8
.LBB0_4: # %optional1 ; B (Copy of C)
bl a
nop
rlwinm. 3, 30, 0, 30, 30
beq 0, .LBB0_2
.LBB0_5: # %optional2 ; D (Copy of E)
bl b
nop
rlwinm. 3, 30, 0, 29, 29
beq 0, .LBB0_3
.LBB0_6: # %optional3 ; F (Copy of G)
bl c
nop
rlwinm. 3, 30, 0, 28, 28
beq 0, .LBB0_8
.LBB0_7: # %optional4 ; H
bl d
nop
.LBB0_8: # %exit
Differential Revision: https://reviews.llvm.org/D28522
llvm-svn: 295223
We currently can't legalize those, but we should really not be creating
them in the first place, since legalization would probably look similar to the
way we legalize CONCAT_VECTORS - basically replace the INSERT with a BUILD.
This fixes PR311956.
Differential Revision: https://reviews.llvm.org/D29961
llvm-svn: 295213
Summary:
The current code loops over all elements to calculate a used range. Then a second short loop looks at the ranges and determines if they can be used in a extract and creates a properly aligned start index for the extract.
This range finding is unnecessary, we can just calculate a properly aligned start index for an extract for each input during the first loop. If we don't find the same start index for each indice we can't use an extract.
Reviewers: zvi, RKSimon
Reviewed By: zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29926
llvm-svn: 295152
Summary:
Blocks ending in unreachable are typically cold because they end the
program or throw an exception, so merging them with other identical
blocks is usually profitable because it reduces the size of cold code.
MachineBlockPlacement generally does not arrange to fall through to such
blocks, so commoning these blocks will not introduce additional
unconditional branches.
Reviewers: hans, iteratee, haicheng
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29153
llvm-svn: 295105
This instruction clears the low bits of a pointer without requiring (possibly
dodgy if pointers aren't ints) conversions to and from an integer. Since (as
far as I'm aware) all masks are statically known, the instruction takes an
immediate operand rather than a register to specify the mask.
llvm-svn: 295103
Store instructions can have more than one memory operand as a result
of optimizations that fold different stores into one.
When we identify spill instructions to generate DBG_VALUE instructions
to record the spilling of a variable, we disregard stores with
multiple memory operands for now. We may miss some relevant spills but
the handling is a bit more complex, so we'll do it in a different patch.
This fixes PR31935.
llvm-svn: 295093
To help assist in debugging ISEL or to prioritize GlobalISel backend
work, this patch adds two more tables to <Target>GenISelDAGISel.inc -
one which contains the patterns that are used during selection and the
other containing include source location of the patterns
Enabled through CMake varialbe LLVM_ENABLE_DAGISEL_COV
llvm-svn: 295081
And use it in MachineOptimizationRemarkEmitter. A test will follow on top of
Justin's changes to enable MachineORE in AsmPrinter.
The approach is similar to the IR-level pass. It's a bit simpler because BPI
is immutable at the Machine level so we don't need to make that lazy.
Because of this, a new function mapping is introduced (BPIPassTrait::getBPI).
This function extracts BPI from the pass. In case of the lazy pass, this is
when the calculation of the BFI occurs. For Machine-level, this is the
identity function.
Differential Revision: https://reviews.llvm.org/D29836
llvm-svn: 295072
Backends don't support this yet. They would have to move to the swifterror
register before the tail call to make sure it is live-in to the call.
rdar://30495920
llvm-svn: 294982
This is consistent with what we do for GlobalISel. That way, it is easy
to see whether or not FastISel is able to fully select a function.
At some point we may want to switch that to an optimization remark.
llvm-svn: 294970
Summary:
Keep a vector of LocInfos around; one for each call to EmitInlineAsm.
Since each call to EmitInlineAsm creates a new buffer in the inline asm
SourceMgr, we can use the buffer number to map to the right LocInfo.
Reviewers: rengolin, grosbach, rnk, echristo
Reviewed By: rnk
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D29769
llvm-svn: 294947
Before this patch compile time was about 21s (see below). After this patch
we have less than 2s (see bellow).
Intel(R) Xeon(R) CPU E5-2676 v3 @ 2.40GHz
DAGCombiner - trunk
time ./llc spill_fdiv.ll -o /dev/null -enable-unsafe-fp-math
real 0m1.685s
DAGCombiner + Speed patch
time ./llc spill_fdiv.ll -o /dev/null -enable-unsafe-fp-math
real 0m1.655s
MachineCombiner w/o Speed patch
time ./llc spill_fdiv.ll -o /dev/null -enable-unsafe-fp-math
real 0m21.614s
MachineCombiner + Speed patch
time ./llc spill_fdiv.ll -o /dev/null -enable-unsafe-fp-math
real 0m1.593s
The test spill_fdiv.ll is attached to D29627
D29627 should be closed.
llvm-svn: 294936
The bug was introduced with:
https://reviews.llvm.org/rL294863
...and manifests as a selection failure in x86, but that's actually
another bug. This fix prevents wrong codegen with -0.0, but in the
more common case when we have NSZ and NNAN (-ffast-math), we should
still be able to fold this setcc/compare.
llvm-svn: 294924
I don't know if anything other than x86 vectors is affected by this change, but this may allow
us to remove target-specific intrinsics for blendv* (vector selects). The simplification arises
from the fact that blendv* instructions only use the sign-bit when deciding which vector element
to choose for the destination vector. The mechanism to fold VSELECT into SHRUNKBLEND nodes already
exists in x86 lowering; this demanded bits change just enables the transform to fire more often.
The original motivation starts with a bug for DSE of masked stores that seems completely unrelated,
but I've explained the likely steps in this series here:
https://llvm.org/bugs/show_bug.cgi?id=11210
Differential Revision: https://reviews.llvm.org/D29687
llvm-svn: 294863
Summary:
powerpc64 big-endian is not supported, but I believe that most logic can
be shared, except for xray_powerpc64.cc.
Also add a function InvalidateInstructionCache to xray_util.h, which is
copied from llvm/Support/Memory.cpp. I'm not sure if I need to add a unittest,
and I don't know how.
Reviewers: dberris, echristo, iteratee, kbarton, hfinkel
Subscribers: mehdi_amini, nemanjai, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D29742
llvm-svn: 294781
The patch comes in 2 parts:
1 - it makes use of the SelectionDAG::NewNodesMustHaveLegalTypes flag to tell when it can safely constant fold illegal types.
2 - it correctly resets SelectionDAG::NewNodesMustHaveLegalTypes at the start of each call to SelectionDAGISel::CodeGenAndEmitDAG so all the pre-legalization stages can make use of it - not just the first basic block that gets handled.
Fix for PR30760
Differential Revision: https://reviews.llvm.org/D29568
llvm-svn: 294749
Summary:
With -debug, we aren't dumping the DAG after legalizing vector ops. In particular, on X86 with AVX1 only, we don't dump the DAG after we split 256-bit integer ops into pairs of 128-bit ADDs since this occurs during vector legalization.
I'm only dumping if the legalize vector ops changes something since we don't print anything during legalize vector ops. So this dump shows up right after the first type-legalization dump happens. So if nothing changed this second dump is unnecessary.
Having said that though, I think we should probably fix legalize vector ops to log what its doing.
Reviewers: RKSimon, eli.friedman, spatel, arsenm, chandlerc
Reviewed By: RKSimon
Subscribers: wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D29554
llvm-svn: 294711
LLVM defines `PTHREAD_LIB` which is used by AddLLVM.cmake and various projects
to correctly link the threading library when needed. Unfortunately
`PTHREAD_LIB` is defined by LLVM's `config-ix.cmake` file which isn't installed
and therefore can't be used when configuring out-of-tree builds. This causes
such builds to fail since `pthread` isn't being correctly linked.
This patch attempts to fix that problem by renaming and exporting
`LLVM_PTHREAD_LIB` as part of`LLVMConfig.cmake`. I renamed `PTHREAD_LIB`
because It seemed likely to cause collisions with downstream users of
`LLVMConfig.cmake`.
llvm-svn: 294690
Summary:
Fix two bugs in SelectionDAGBuilder::FindMergedConditions reported by
Mikael Holmen. Handle non-canonicalized xor not operation
correctly (was assuming operand 0 was always the non-constant operand)
and check that the negated condition is also in the same block as the
original and/or instruction (as is done for and/or operands already)
before proceeding with optimization.
Reviewers: bogner, MatzeB, qcolombet
Subscribers: mcrosier, uabelho, llvm-commits
Differential Revision: https://reviews.llvm.org/D29680
llvm-svn: 294605
Stack Smash Protection is not completely free, so in hot code, the overhead it causes can cause performance issues. By adding diagnostic information for which function have SSP and why, a user can quickly determine what they can do to stop SSP being applied to a specific hot function.
This change adds an SSP-specific DiagnosticInfo class and uses of it to the Stack Protection code. A subsequent change to clang will cause the remarks to be emitted when enabled.
Patch by: James Henderson
Differential Revision: https://reviews.llvm.org/D29023
llvm-svn: 294590
It'll usually be immediately legalized back to a libcall, but occasionally
something can be done with it so we'd just as well enable that flexibility from
the start.
llvm-svn: 294530
AArch64 has specific instructions to multiply two numbers at double the width
and produce the high part of the result. These can be used to implement LLVM's
mul.with.overflow instructions fairly simply. Helps with C++ operator new[].
llvm-svn: 294519
Fixed test.
Summary:
Enables source location in diagnostic messages from the backend. This
is after parsing, during finalization. This requires the SourceMgr, the
inline assembly string buffer, and DiagInfo to still be alive after
EmitInlineAsm returns.
This patch creates a single SourceMgr for inline assembly inside the
AsmPrinter. MCContext gets a pointer to this SourceMgr. Using one
SourceMgr per call to EmitInlineAsm would make it difficult for
MCContext to figure out in which SourceMgr the SMLoc is located, while a
single SourceMgr can figure it out if it has multiple buffers.
The Str argument to EmitInlineAsm is copied into a buffer and owned by
the inline asm SourceMgr. This ensures that DiagHandlers won't print
garbage. (Clang emits a "note: instantiated into assembly here", which
refers to this string.)
The AsmParser gets destroyed before finalization, which means that the
DiagHandlers the AsmParser installs into the SourceMgr will be stale.
Restore the saved DiagHandlers.
Since now we're using just one SourceMgr for multiple inline asm
strings, we need to tell the AsmParser which buffer it needs to parse
currently. Hand a buffer id -- returned from SourceMgr::
AddNewSourceBuffer -- to the AsmParser.
Reviewers: rnk, grosbach, compnerd, rengolin, rovka, anemet
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29441
llvm-svn: 294458
It caused undefined behavior in VarLoc. As far as I investigated,
- VarLoc::VarLoc() treats negative offset value as InvalidKind.
Consider the case that (int64_t)MI.getOperand(1).getImm() is negative and whether it satisfies ((uint64_t)Offset < (1ULL << 32)).
- Comparison operators in VarLoc behave undefined since VarLoc::Loc.Hash is uninitialized in case of InvalidKind.
I guess Offset (in VarLoc) could be made aware of signed, but I am not sure.
So I have reverted it for now.
llvm-svn: 294447
Summary:
Enables source location in diagnostic messages from the backend. This
is after parsing, during finalization. This requires the SourceMgr, the
inline assembly string buffer, and DiagInfo to still be alive after
EmitInlineAsm returns.
This patch creates a single SourceMgr for inline assembly inside the
AsmPrinter. MCContext gets a pointer to this SourceMgr. Using one
SourceMgr per call to EmitInlineAsm would make it difficult for
MCContext to figure out in which SourceMgr the SMLoc is located, while a
single SourceMgr can figure it out if it has multiple buffers.
The Str argument to EmitInlineAsm is copied into a buffer and owned by
the inline asm SourceMgr. This ensures that DiagHandlers won't print
garbage. (Clang emits a "note: instantiated into assembly here", which
refers to this string.)
The AsmParser gets destroyed before finalization, which means that the
DiagHandlers the AsmParser installs into the SourceMgr will be stale.
Restore the saved DiagHandlers.
Since now we're using just one SourceMgr for multiple inline asm
strings, we need to tell the AsmParser which buffer it needs to parse
currently. Hand a buffer id -- returned from SourceMgr::
AddNewSourceBuffer -- to the AsmParser.
Reviewers: rnk, grosbach, compnerd, rengolin, rovka, anemet
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29441
llvm-svn: 294433
When variables are spilled to the stack by the register allocator, keep track of their
debug locations in LiveDebugValues and insert DBG_VALUE instructions at the appropriate
place. Ensure that the locations are propagated down the dominator tree via the existing
mechanisms.
Reviewer: aprantl
Differential Revision: https://reviews.llvm.org/D29500
llvm-svn: 294356
They are currently modelled incorrectly (as calls, which clobber
registers, confusing e.g. Machine Copy Propagation).
Reverting until we figure out the proper solution.
llvm-svn: 294348
Summary:
This change allows usage of store instruction for implicit null check.
Memory Aliasing Analisys is not used and change conservatively supposes
that any store and load may access the same memory. As a result
re-ordering of store-store, store-load and load-store is prohibited.
Patch by Serguei Katkov!
Reviewers: reames, sanjoy
Reviewed By: sanjoy
Subscribers: atrick, llvm-commits
Differential Revision: https://reviews.llvm.org/D29400
llvm-svn: 294338
Hoist entry block code for arguments and swift error values out of the
basic block instruction selection loop. Lowering arguments once up front
seems much more readable than doing it conditionally inside the loop. It
also makes it clear that argument lowering can update StaticAllocaMap
because no instructions have been selected yet.
Also use range-based for loops where possible.
llvm-svn: 294329
This reverts commit r294186.
On an internal test, this triggers an out-of-memory error on PPC,
presumably because there is another dagcombine that does the exact
opposite triggering and endless loop consuming more and more memory.
Chandler has started at creating a reduced test case and we'll attach it
as soon as possible.
llvm-svn: 294288
joinReservedPhysReg() can only deal with a liverange in a single basic
block when copying from a vreg into a physreg.
See also rdar://30306405
Differential Revision: https://reviews.llvm.org/D29436
llvm-svn: 294268
We don't handle all cases yet (see arm64-fallback.ll for an example), but this
is enough to cover most common C++ code so it's a good place to start.
llvm-svn: 294247
Currently we only combine shuffle nodes if they have a single user to prevent us from causing code bloat by splitting the shuffles into several different combines.
We don't take into account that in some cases we will already have combined all the users during recursively calling up the shuffle tree.
This patch keeps a list of all the shuffle nodes that have been combined so far and permits combining of further shuffle nodes if all its users are in that list.
Differential Revision: https://reviews.llvm.org/D29399
llvm-svn: 294183
Summary:
Make this interface reusable similarly to std::call_once and std::once_flag interface.
This makes porting LLDB to NetBSD easier as there was in the original approach a portable way to specify a non-static once_flag. With this change translating std::once_flag to llvm::once_flag is mechanical.
Sponsored by <The NetBSD Foundation>
Reviewers: mehdi_amini, labath, joerg
Reviewed By: mehdi_amini
Subscribers: emaste, clayborg
Differential Revision: https://reviews.llvm.org/D29566
llvm-svn: 294143
Summary:
Without this change, the getVR() call would hit an assert since it was
being passed a physical register.
Update the AArch64/ldst-opt.ll test with a case that triggers this
behavior by adding a run with strict-align, which causes an unaligned
STR XZR instruction to be split into byte stores, creating an
EXTRACT_SUBREG of XZR that triggers the original problem.
Reviewers: bogner, qcolombet, MatzeB, atrick
Subscribers: aemerson, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D29495
llvm-svn: 294129
Summary: This avoid the need to duplicate all pattern and actually end up exposing some opportunity to optimize existing pattern that did not exists in both directions on an existing test case.
Reviewers: mkuper, spatel, bkramer, RKSimon, zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29541
llvm-svn: 294125
This was originally introduced in r278321 to work around correctness
problems in the ExecutionDepsFix pass; Probably also to keep the
performance benefits of breaking the false dependencies which of course
also affect undef operands.
ExecutionDepsFix has been improved here recently (see for example
r278321) so we should not need this exception any longer.
Differential Revision: https://reviews.llvm.org/D29525
llvm-svn: 294087
Move a check for blocks that are not candidates for tail duplication up before
the logging. Reduces logging noise. No non-logging changes intended.
llvm-svn: 294086
Anything that needs to be passed to AnalyzeBranch unfortunately can't be const,
or more would be const. Added const_iterator to BlockChain to allow
BlockChain to be const when we don't expect to change it.
llvm-svn: 294085
An assert occurs when calling SlotIndexes::getInstructionIndex with
a DBG_VALUE instruction because the function expects an instruction
with a slot index. However, there is no slot index for a DBG_VALUE
instruction.
Differential Revision: https://reviews.llvm.org/D29048
llvm-svn: 294070
This re-applies commit r292189, reverted in r292191.
SelectionDAGBuilder recognizes libfuncs using some homegrown
parameter type-checking.
Use TLI instead, removing another heap of redundant code.
This isn't strictly NFC, as the SDAG code was too lax.
Concretely, this means changes are required to a few tests:
- calling a non-variadic function via a variadic prototype isn't OK;
it just happens to work on x86_64 (but not on, e.g., aarch64).
- mempcpy has a size_t parameter; the SDAG code accepts any integer
type, which meant using i32 on x86_64 worked.
- a handful of SystemZ tests check the SDAG support for lax prototype
checking: Ulrich agrees on removing them.
I don't think it's worth supporting any of these (IMO) invalid
testcases. Instead, fix them to be more meaningful.
llvm-svn: 294028
ISD::DELETED_NODE && "NodeToMatch was removed partway through
selection"' failed.
NodeToMatch can be modified during matching, but code does not handle
this situation.
Differential Revision: https://reviews.llvm.org/D29292
llvm-svn: 294003
While looking to add support for placing singular types (types that will
only be emitted in one place (such as attached to a strong vtable or
explicit template instantiation definition)) not in type units (since
type units have overhead) I stumbled across that change causing an
increase in pubtypes.
Turns out we were missing some types from type units if they were only
referenced from other type units and not from the debug_info section.
This fixes that, following GCC's line of describing the offset of such
entities as the CU die (since there's no compile unit-relative offset
that would describe such an entity - they aren't in the CU). Also like
GCC, this change prefers to describe the type stub within the CU rather
than the "just use the CU offset" fallback where possible. This may give
the DWARF consumer some opportunity to find the extra info in the type
stub - though I'm not sure GDB does anything with this currently.
The size of the pubnames/pubtypes sections now match exactly with or
without type units enabled.
This nearly triples (+189%) the pubtypes section for a clang self-host
and grows pubnames by 0.07% (without compression). For a total of 8%
increase in debug info sections of the objects of a Split DWARF build
when using type units.
llvm-svn: 293971
Summary: Some compilers, including MSVC and Clang, allow linker options to be specified in source files. In the legacy LTO API, there is a getLinkerOpts() method that returns linker options for the bitcode module being processed. This change adds that method to the new API, so that the COFF linker can get the right linker options when using the new LTO API.
Reviewers: pcc, ruiu, mehdi_amini, tejohnson
Reviewed By: pcc
Differential Revision: https://reviews.llvm.org/D29207
llvm-svn: 293950
1. Added comments for options
2. Added missing option cl::desc field
3. Uniified function filter option for graph viewing.
Now PGO count/raw-counts share the same
filter option: -view-bfi-func-name=.
llvm-svn: 293938
In r283838, we added the capability of splitting unspillable register.
When doing so we had to make sure the split live-ranges were also
unspillable and we did that by marking the related live-ranges in the
delegate method that is called when a new vreg is created.
However, by accessing the live-range there, we also triggered their lazy
computation (LiveIntervalAnalysis::getInterval) which is not what we
want in general. Indeed, later code in LiveRangeEdit is going to build
the live-ranges this lazy computation may mess up that computation
resulting in assertion failures. Namely, the createEmptyIntervalFrom
method expect that the live-range is going to be empty, not computed.
Thanks to Mikael Holmén <mikael.holmen@ericsson.com> for noticing and
reporting the problem.
llvm-svn: 293934
Recommiting after fixing X86 inc/dec chain bug.
* Simplify Consecutive Merge Store Candidate Search
Now that address aliasing is much less conservative, push through
simplified store merging search and chain alias analysis which only
checks for parallel stores through the chain subgraph. This is cleaner
as the separation of non-interfering loads/stores from the
store-merging logic.
When merging stores search up the chain through a single load, and
finds all possible stores by looking down from through a load and a
TokenFactor to all stores visited.
This improves the quality of the output SelectionDAG and the output
Codegen (save perhaps for some ARM cases where we correctly constructs
wider loads, but then promotes them to float operations which appear
but requires more expensive constant generation).
Some minor peephole optimizations to deal with improved SubDAG shapes (listed below)
Additional Minor Changes:
1. Finishes removing unused AliasLoad code
2. Unifies the chain aggregation in the merged stores across code
paths
3. Re-add the Store node to the worklist after calling
SimplifyDemandedBits.
4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is
arbitrary, but seems sufficient to not cause regressions in
tests.
5. Remove Chain dependencies of Memory operations on CopyfromReg
nodes as these are captured by data dependence
6. Forward loads-store values through tokenfactors containing
{CopyToReg,CopyFromReg} Values.
7. Peephole to convert buildvector of extract_vector_elt to
extract_subvector if possible (see
CodeGen/AArch64/store-merge.ll)
8. Store merging for the ARM target is restricted to 32-bit as
some in some contexts invalid 64-bit operations are being
generated. This can be removed once appropriate checks are
added.
This finishes the change Matt Arsenault started in r246307 and
jyknight's original patch.
Many tests required some changes as memory operations are now
reorderable, improving load-store forwarding. One test in
particular is worth noting:
CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store
forwarding converts a load-store pair into a parallel store and
a memory-realized bitcast of the same value. However, because we
lose the sharing of the explicit and implicit store values we
must create another local store. A similar transformation
happens before SelectionDAG as well.
Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle
llvm-svn: 293893
LTO. Replace it with a related assertion, ensuring that abstract
variables appear only in abstract scopes.
Part of PR31437.
Differential Revision: http://reviews.llvm.org/D29430
llvm-svn: 293841
Summary:
This change allows a re-order of two intructions if their uses
are overlapped.
Patch by Serguei Katkov!
Reviewers: reames, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29120
llvm-svn: 293775
Summary:
This way, the type legalization machinery will take care of registering
the result of this node properly.
This patches fixes all failing fp16 test cases with expensive checks.
(CodeGen/ARM/fp16-promote.ll, CodeGen/ARM/fp16.ll, CodeGen/X86/cvt16.ll
CodeGen/X86/soft-fp.ll)
Reviewers: t.p.northover, baldrick, olista01, bogner, jmolloy, davidxl, ab, echristo, hfinkel
Reviewed By: hfinkel
Subscribers: mehdi_amini, hfinkel, davide, RKSimon, aemerson, llvm-commits
Differential Revision: https://reviews.llvm.org/D28195
llvm-svn: 293765
This patch moves the class for scheduling adjacent instructions,
MacroFusion, to the target.
In AArch64, it also expands the fusion to all instructions pairs in a
scheduling block, beyond just among the predecessors of the branch at the
end.
Differential revision: https://reviews.llvm.org/D28489
llvm-svn: 293737
Summary:
isSuitableMemoryOp method is repsonsible for verification
that instruction is a candidate to use in implicit null check.
Additionally it checks that base register is not re-defined before.
In case base has been re-defined it just returns false and lookup
is continued while any suitable instruction will not succeed this check
as well. This results in redundant further operations.
So when we found that base register has been re-defined we just
stop.
Patch by Serguei Katkov!
Reviewers: reames, sanjoy
Reviewed By: sanjoy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29119
llvm-svn: 293736
SplitEditor::defFromParent() can create a register copy.
If register is a tuple of other registers and not all lanes are used
a copy will be done on a full tuple regardless. Later register unit
for an unused lane will be considered free and another overlapping
register tuple can be assigned to a different value even though first
register is live at that point. That is because interference only look at
liveness info, while full register copy clobbers all lanes, even unused.
This patch fixes copy to only cover used lanes.
Differential Revision: https://reviews.llvm.org/D29105
llvm-svn: 293728
When choosing the best successor for a block, ordinarily we would have preferred
a block that preserves the CFG unless there is a strong probability the other
direction. For small blocks that can be duplicated we now skip that requirement
as well, subject to some simple frequency calculations.
Differential Revision: https://reviews.llvm.org/D28583
llvm-svn: 293716
Fix a bug where we would construct shufflevector instructions addressing
invalid elements.
Differential Revision: https://reviews.llvm.org/D29313
llvm-svn: 293673
Well, sort of. But the lower-level code that invoke used to be using completely
botched the handling of varargs functions, which hopefully won't be possible if
they're using the same code.
llvm-svn: 293670
Summary:
The affected transforms all implicitly use associativity of addition,
for which we usually require unsafe math to be enabled.
The "Aggressive" flag is only meant to convey information about the
performance of the fused ops relative to a fmul+fadd sequence.
Fixes Bug 31626.
Reviewers: spatel, hfinkel, mehdi_amini, arsenm, tstellarAMD
Subscribers: jholewinski, nemanjai, wdng, llvm-commits
Differential Revision: https://reviews.llvm.org/D28675
llvm-svn: 293635
Summary:
In revision rL278321, ExecutionDepsFix learned how to pick a better
register for undef register reads, e.g. for instructions such as
`vcvtsi2sdq`. While this revision improved performance on a good number
of our benchmarks, it unfortunately also caused significant regressions
(up to 3x) on others. This regression turned out to be caused by loops
such as:
PH -> A -> B (xmm<Undef> -> xmm<Def>) -> C -> D -> EXIT
^ |
+----------------------------------+
In the previous version of the clearance calculation, we would visit
the blocks in order, remembering for each whether there were any
incoming backedges from blocks that we hadn't processed yet and if
so queuing up the block to be re-processed. However, for loop structures
such as the above, this is clearly insufficient, since the block B
does not have any unknown backedges, so we do not see the false
dependency from the previous interation's Def of xmm registers in B.
To fix this, we need to consider all blocks that are part of the loop
and reprocess them one the correct clearance values are known. As
an optimization, we also want to avoid reprocessing any later blocks
that are not part of the loop.
In summary, the iteration order is as follows:
Before: PH A B C D A'
Corrected (Naive): PH A B C D A' B' C' D'
Corrected (w/ optimization): PH A B C A' B' C' D
To facilitate this optimization we introduce two new counters for each
basic block. The first counts how many of it's predecssors have
completed primary processing. The second counts how many of its
predecessors have completed all processing (we will call such a block
*done*. Now, the criteria to reprocess a block is as follows:
- All Predecessors have completed primary processing
- For x the number of predecessors that have completed primary
processing *at the time of primary processing of this block*,
the number of predecessors that are done has reached x.
The intuition behind this criterion is as follows:
We need to perform primary processing on all predecessors in order to
find out any direct defs in those predecessors. When predecessors are
done, we also know that we have information about indirect defs (e.g.
in block B though that were inherited through B->C->A->B). However,
we can't wait for all predecessors to be done, since that would
cause cyclic dependencies. However, it is guaranteed that all those
predecessors that are prior to us in reverse postorder will be done
before us. Since we iterate of the basic blocks in reverse postorder,
the number x above, is precisely the count of the number of predecessors
prior to us in reverse postorder.
Reviewers: myatsina
Differential Revision: https://reviews.llvm.org/D28759
llvm-svn: 293571
For some reason the exception selector register must be a pointer (that's
assumed by SDag); on the other hand, it gets moved into an IR-level type which
might be entirely different (i32 on AArch64). IRTranslator needs to be aware of
this.
llvm-svn: 293546
Previously, we would hit UB (or the ISD::DELETED_NODE assert) if we
happened to replace a node during UpdateChains, because it would be
left in the list we were iterating over. This nulls out the pointer
when that happens so that we can avoid the issue.
Fixes llvm.org/PR31710
llvm-svn: 293522
To simplify/clarify memory ownership, make leaks (as one was found/fixed
recently) harder to write, etc.
(also, while I was there - removed a duplicate lookup in a container)
llvm-svn: 293506
The primary use of the dump() functions in LLVM is for use in a
debugger. Unfortunately lldb does not seem to handle default arguments
so using `p SomeMI.dump()` fails and you have to type the longer `p
SomeMI.dump(nullptr)`. Remove the paramter to make the most common use
easy. (You can always construct something like `p
SomeMI.print(dbgs(),MyTII)` if you need more features).
Differential Revision: https://reviews.llvm.org/D29241
llvm-svn: 293440
The type system already requires that the number of vector elements must fit in 32-bits so an index should as well. Even if the type of the index were larger all we care about is that the constant index can fit in 64-bits so that we can call getZExtValue.
llvm-svn: 293413
When the OperandsMapper creates virtual registers, it used to just create
plain scalar register with the right size. This may confuse the
instruction selector because we lose the information of the instruction
using those registers what supposed to do. The MachineVerifier complains
about that already.
With this patch, the OperandsMapper still creates plain scalar register,
but the expectation is for the mapping function to remap the type
properly. The default mapping function has been updated to do that.
rdar://problem/30231850
llvm-svn: 293362
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359
In r292621, the recommit fixes a bug related with live interval update
after the partial redundent copy is moved.
This recommit solves an additional bug related to the lack of update of
subranges.
The original patch is to solve the performance problem described in
PR27827. Register coalescing sometimes cannot remove a copy because of
interference. But if we can find a reverse copy in one of the predecessor
block of the copy, the copy is partially redundent and we may remove the
copy partially by moving it to the predecessor block without the
reverse copy.
Differential Revision: https://reviews.llvm.org/D28585
Re-apply r292621
Revert "Revert rL292621. Caused some internal build bot failures in apple."
This reverts commit r292984.
Original patch: Wei Mi <wmi@google.com>
Subrange fix: Mostly Matthias Braun <matze@braunis.de>
llvm-svn: 293353
We have to delete the block manually or it leaks. That triggers failures in
-fsanitize=leak bots (unsurprisingly), which should be fixed by this patch.
llvm-svn: 293347
Preparation for upcoming changes. No testcase as none of the public
targets bundles early enough and has a post machine scheduler enabled at
the same time. The error is also easily catched by asserts.
llvm-svn: 293324
Summary: This change prevent the signed value of cost from being negative as the value is passed as an unsigned argument.
Reviewers: mcrosier, jmolloy, qcolombet, javed.absar
Reviewed By: mcrosier, qcolombet
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28871
llvm-svn: 293307
In case of a SIGN/ZERO_EXTEND of an incomplete vector type (using only a
partial number of available vector elements), WidenVecRes_Convert() used to
resort to scalarization.
This patch adds a handling of the (common) case where an input vector can be
found of same width as the widened result vector, by converting the node to
SIGN/ZERO_EXTEND_VECTOR_INREG.
Review: Eli Friedman
llvm-svn: 293268
The translation scheme is mostly cribbed from FastISel, and it's not entirely
convincing semantically. But it does seem to work in the common cases and allow
variables to be printed so it can't be all wrong.
llvm-svn: 293228
This commit introduces a set of experimental intrinsics intended to prevent
optimizations that make assumptions about the rounding mode and floating point
exception behavior. These intrinsics will later be extended to specify
flush-to-zero behavior. More work is also required to model instruction
dependencies in machine code and to generate these instructions from clang
(when required by pragmas and/or command line options that are not currently
supported).
Differential Revision: https://reviews.llvm.org/D27028
llvm-svn: 293226