To clear assumptions that are potentially invalid after trivialization, we need
to walk the use/def chain. Normally, the only way to reach an instruction with
an unsized type is via an instruction that has side effects (or otherwise will
demand its input bits). That would stop the walk. However, if we have a
readnone function that returns an unsized type (e.g., void), we must avoid
asking for the demanded bits of the function call's return value. A
void-returning readnone function is always dead (and so we can stop walking the
use/def chain here), but the check is necessary to avoid asserting.
Fixes PR34211.
llvm-svn: 311014
The assert was added with r310779 and is usually correct,
but as the test shows, not always. The 'volatile' on the
load is needed to expose the faulty path because without
it, DemandedBits would return that the load is just dead
rather than not demanded, and so we wouldn't hit the
bogus assert.
Also, since the lambda is just a single-line now, get rid
of it and inline the DB.isAllOnesValue() calls.
This should fix (prevent execution of a faulty assert):
https://bugs.llvm.org/show_bug.cgi?id=34179
llvm-svn: 310842
There is no situation where this rarely-used argument cannot be
substituted with a DIExpression and removing it allows us to simplify
the DWARF backend. Note that this patch does not yet remove any of
the newly dead code.
rdar://problem/33580047
Differential Revision: https://reviews.llvm.org/D35951
llvm-svn: 309426
Summary:
* Add a bitreverse case in the demanded bits analysis pass.
* Add tests for the bitreverse (and bswap) intrinsic in the
demanded bits pass.
* Add a test case to the BDCE tests: that manipulations to
high-order bits are eliminated once the bits are reversed
and then right-shifted.
Reviewers: mkuper, jmolloy, hfinkel, trentxintong
Reviewed By: jmolloy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31857
llvm-svn: 300215
The fix committed in r288851 doesn't cover all the cases.
In particular, if we have an instruction with side effects
which has a no non-dbg use not depending on the bits, we still
perform RAUW destroying the dbg.value's first argument.
Prevent metadata from being replaced here to avoid the issue.
Differential Revision: https://reviews.llvm.org/D27534
llvm-svn: 288987
BDCE has two phases:
1. It asks SimplifyDemandedBits if all the bits of an instruction are dead, and if so,
replaces all its uses with the constant zero.
2. Then, it asks SimplifyDemandedBits again if the instruction is really dead
(no side effects etc..) and if so, eliminates it.
Now, in 1) if all the bits of an instruction are dead, we may end up replacing a dbg use:
%call = tail call i32 (...) @g() #4, !dbg !15
tail call void @llvm.dbg.value(metadata i32 %call, i64 0, metadata !8, metadata !16), !dbg !17
->
%call = tail call i32 (...) @g() #4, !dbg !15
tail call void @llvm.dbg.value(metadata i32 0, i64 0, metadata !8, metadata !16), !dbg !17
but not eliminating the call because it may have arbitrary side effects.
In other words, we lose some debug informations.
This patch fixes the problem making sure that BDCE does nothing with the instruction if
it has side effects and no non-dbg uses.
Differential Revision: https://reviews.llvm.org/D27471
llvm-svn: 288851
The personality routine currently lives in the LandingPadInst.
This isn't desirable because:
- All LandingPadInsts in the same function must have the same
personality routine. This means that each LandingPadInst beyond the
first has an operand which produces no additional information.
- There is ongoing work to introduce EH IR constructs other than
LandingPadInst. Moving the personality routine off of any one
particular Instruction and onto the parent function seems a lot better
than have N different places a personality function can sneak onto an
exceptional function.
Differential Revision: http://reviews.llvm.org/D10429
llvm-svn: 239940
When visiting the initial list of "root" instructions (those which must always
be alive), for those that are integer-valued (such as invokes returning an
integer), we mark their bits as (initially) all dead (we might, obviously, find
uses of those bits later, but all bits are assumed dead until proven
otherwise). Don't do so, however, if we're already seen a use of those bits by
another root instruction (such as a store).
Fixes a miscompile of the sanitizer unit tests on x86_64.
Also, add a debug line for visiting the root instructions, and remove a debug
line which tried to print instructions being removed (printing dead
instructions is dangerous, and can sometimes crash).
llvm-svn: 229618
BDCE is a bit-tracking dead code elimination pass. It is based on ADCE (the
"aggressive DCE" pass), with the added capability to track dead bits of integer
valued instructions and remove those instructions when all of the bits are
dead.
Currently, it does not actually do this all-bits-dead removal, but rather
replaces the instruction's uses with a constant zero, and lets instcombine (and
the later run of ADCE) do the rest. Because we essentially get a run of ADCE
"for free" while tracking the dead bits, we also do what ADCE does and removes
actually-dead instructions as well (this includes instructions newly trivially
dead because all bits were dead, but not all such instructions can be removed).
The motivation for this is a case like:
int __attribute__((const)) foo(int i);
int bar(int x) {
x |= (4 & foo(5));
x |= (8 & foo(3));
x |= (16 & foo(2));
x |= (32 & foo(1));
x |= (64 & foo(0));
x |= (128& foo(4));
return x >> 4;
}
As it turns out, if you order the bit-field insertions so that all of the dead
ones come last, then instcombine will remove them. However, if you pick some
other order (such as the one above), the fact that some of the calls to foo()
are useless is not locally obvious, and we don't remove them (without this
pass).
I did a quick compile-time overhead check using sqlite from the test suite
(Release+Asserts). BDCE took ~0.4% of the compilation time (making it about
twice as expensive as ADCE).
I've not looked at why yet, but we eliminate instructions due to having
all-dead bits in:
External/SPEC/CFP2006/447.dealII/447.dealII
External/SPEC/CINT2006/400.perlbench/400.perlbench
External/SPEC/CINT2006/403.gcc/403.gcc
MultiSource/Applications/ClamAV/clamscan
MultiSource/Benchmarks/7zip/7zip-benchmark
llvm-svn: 229462