The code in LLDB assumes that CompilerType and friends use the size 0
as a sentinel value to signal an error. This works for C++, where no
zero-sized type exists, but in many other programming languages
(including I believe C) types of size zero are possible and even
common. This is a particular pain point in swift-lldb, where extra
code exists to double-check that a type is *really* of size zero and
not an error at various locations.
To remedy this situation, this patch starts by converting
CompilerType::getBitSize() and getByteSize() to return an optional
result. To avoid wasting space, I hand-rolled my own optional data
type assuming that no type is larger than what fits into 63
bits. Follow-up patches would make similar changes to the ValueObject
hierarchy.
rdar://problem/47178964
Differential Revision: https://reviews.llvm.org/D56688
llvm-svn: 351214
This parameter was only ever used with the Module set, and
since a SymbolFile is tied to a module, the parameter turns
out to be entirely unnecessary. Furthermore, it doesn't make
a lot of sense to ask a caller to ask SymbolFile which is tied
to Module X to find types for Module Y, but that possibility
was open with the previous interface. By removing this
parameter from the API, it makes it harder to use incorrectly
as well as easier for an implementor to understand what it
needs to do.
llvm-svn: 351133
This method took a SymbolContext but only actually cared about the
case where the m_function member was set. Furthermore, it was
intended to be implemented to parse blocks recursively despite not
documenting this in its name. So we change the name to indicate
that it should be recursive, while also limiting the function
parameter to be a Function&. This lets the caller know what is
required to use it, as well as letting new implementers know what
kind of inputs they need to be prepared to handle.
llvm-svn: 351131
Summary:
This patch allows to retrieve an address object for `ValueObject`'s children
retrieved through e.g. `GetChildAtIndex` or `GetChildMemberWithName`. It just
uses the corresponding method of the implementation object `m_impl` to achieve
that.
Reviewers: zturner, JDevlieghere, clayborg, labath, serge-sans-paille
Reviewed By: clayborg
Subscribers: leonid.mashinskiy, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D56147
llvm-svn: 351065
Previously all of these functions accepted a SymbolContext&.
While a CompileUnit is one member of a SymbolContext, there
are also many others, and by passing such a monolithic parameter
in this way it makes the requirements and assumptions of the
API unclear for both callers as well as implementors.
All these methods need is a CompileUnit. By limiting the
parameter type in this way, we simplify the code as well as
make it self-documenting for both implementers and users.
Differential Revision: https://reviews.llvm.org/D56564
llvm-svn: 350943
The function SymbolFile::ParseTypes previously accepted a SymbolContext.
This makes it extremely difficult to implement faithfully, because you
have to account for all possible combinations of members being set in
the SymbolContext. On the other hand, no clients of this function
actually care about implementing this function to this strict of a
standard. AFAICT, there is actually only 1 client in the entire
codebase, and it is the function ParseAllDebugSymbols, which is itself
only called for testing purposes when dumping information. At this
call-site, the only field it sets is the CompileUnit, meaning that an
implementer of a SymbolFile need not worry about any examining or
handling any other fields which might be set.
By restricting this API to accept exactly a CompileUnit& and nothing
more, we can simplify the life of new SymbolFile plugin implementers by
making it clear exactly what the necessary and sufficient set of
functionality they need to implement is, while at the same time removing
some dead code that tried to handle other types of SymbolContext fields
that were never going to be set anyway.
Differential Revision: https://reviews.llvm.org/D56462
llvm-svn: 350889
D55859 changed "external tools or libraries" to "external sources" according to
Pavel Labath. Now it is changed sort of back to "external tools and
repositories" according to Adrian Prantl.
https://reviews.llvm.org/D55859#1345881
llvm-svn: 350479
There is already in use:
lit/lit-lldb-init:
settings set symbols.enable-external-lookup false
packages/Python/lldbsuite/test/lldbtest.py:
self.runCmd('settings set symbols.enable-external-lookup false')
But those are not in effect during MI part of the testsuite. Another problem is
that symbols.enable-external-lookup (read by GetEnableExternalLookup) has been
currently read only by LocateMacOSXFilesUsingDebugSymbols and therefore it had
no effect on Linux.
On Red Hat platforms (Fedoras, RHEL-7) there is DWZ in use and so
MiSyntaxTestCase-test_lldbmi_output_grammar FAILs due to:
AssertionError: error: inconsistent pattern ''^.+?\n'' for state 0x5f
(matched string: warning: (x86_64) /lib64/libstdc++.so.6 unsupported
DW_FORM values: 0x1f20 0x1f21
It is the only testcase with this error. It happens due to:
(lldb) target create "/lib64/libstdc++.so.6"
Current executable set to '/lib64/libstdc++.so.6' (x86_64).
(lldb) b main
warning: (x86_64) /lib64/libstdc++.so.6 unsupported DW_FORM values: 0x1f20 0x1f21
Breakpoint 1: no locations (pending).
WARNING: Unable to resolve breakpoint to any actual locations.
which happens only with gcc-base-debuginfo rpm installed (similarly for other packages).
It should also speed up the testsuite as it no longer needs to read
/usr/lib/debug symbols which have no effect (and should not have any effect) on
the testsuite results.
Differential Revision: https://reviews.llvm.org/D55859
llvm-svn: 350368
Summary:
instead of returning the architecture through by-ref argument and a
boolean value indicating success, we can just return the ArchSpec
directly. Since the ArchSpec already has an invalid state, it can be
used to denote the failure without the additional bool.
Reviewers: clayborg, zturner, espindola
Subscribers: emaste, arichardson, JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D56129
llvm-svn: 350291
Using compare is verbose, bug prone and potentially inefficient (because
of early termination). Replace relevant call sites with the (in)equality
operator.
llvm-svn: 349972
This patch simplifies boolean expressions acorss LLDB. It was generated
using clang-tidy with the following command:
run-clang-tidy.py -checks='-*,readability-simplify-boolean-expr' -format -fix $PWD
Differential revision: https://reviews.llvm.org/D55584
llvm-svn: 349215
Summary:
These are general purpose "utility" classes, whose functionality is not
debugger-specific in any way. As such, I believe they belong in the
Utility module.
This doesn't break any particular dependency (yet), but it reduces the
number of Core dependencies across the board.
Reviewers: zturner, jingham, teemperor, clayborg
Subscribers: mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D55361
llvm-svn: 349157
This patch changes the way the reproducer is initialized. Rather than
making changes at run time we now do everything at initialization time.
To make this happen we had to introduce initializer options and their SB
variant. This allows us to tell the initializer that we're running in
reproducer capture/replay mode.
Because of this change we also had to alter our testing strategy. We
cannot reinitialize LLDB when using the dotest infrastructure. Instead
we use lit and invoke two instances of the driver.
Another consequence is that we can no longer enable capture or replay
through commands. This was bound to go away form the beginning, but I
had something in mind where you could enable/disable specific providers.
However this seems like it adds very little value right now so the
corresponding commands were removed.
Finally this change also means you now have to control this through the
driver, for which I replaced --reproducer with --capture and --replay to
differentiate between the two modes.
Differential revision: https://reviews.llvm.org/D55038
llvm-svn: 348152
Summary:
This patch adds possibility of searching a public symbol with name and type in
a symbol file, not only in a symtab. It is helpful when working with PE, because
PE's symtabs contain only imported / exported symbols only. Such a search is
required for e.g. evaluation of an expression that calls some function of
the debuggee.
Reviewers: zturner, asmith, labath, clayborg, espindola
Reviewed By: clayborg
Subscribers: davide, emaste, arichardson, aleksandr.urakov, jingham,
lldb-commits, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D53368
llvm-svn: 347960
When I landed the initial reproducer framework I knew there were some
things that needed improvement. Rather than bundling it with a patch
that adds more functionality I split it off into this patch. I also
think the API is stable enough to add unit testing, which is included in
this patch as well.
Other improvements include:
- Refactor how we initialize the loader and generator.
- Improve naming consistency: capture and replay seems the least ambiguous.
- Index providers by name and make sure there's only one of each.
- Add convenience methods for creating and accessing providers.
Differential revision: https://reviews.llvm.org/D54616
llvm-svn: 347716
After committing the initial reproducer feature I noticed a few small
issues which warranted addressing here. It fixes incorrect documentation
in the command object and extract some duplicated code into the debugger
object.
llvm-svn: 346919
Test cases were updated to not use the local compilation dir which
is different between development pc and build bots.
Original commit message:
[LLDB] - Support the single file split DWARF.
DWARF5 spec describes a single file split dwarf case
(when .dwo sections are in the .o files).
Problem is that LLDB does not work correctly in that case.
The issue is that, for example, both .debug_info and .debug_info.dwo
has the same type: eSectionTypeDWARFDebugInfo. And when code searches
section by type it might find the regular debug section
and not the .dwo one.
The patch fixes that. With it, LLDB is able to work with
output compiled with -gsplit-dwarf=single flag correctly.
Differential revision: https://reviews.llvm.org/D52403
llvm-svn: 346855
DWARF5 spec describes a single file split dwarf case
(when .dwo sections are in the .o files).
Problem is that LLDB does not work correctly in that case.
The issue is that, for example, both .debug_info and .debug_info.dwo
has the same type: eSectionTypeDWARFDebugInfo. And when code searches
section by type it might find the regular debug section
and not the .dwo one.
The patch fixes that. With it, LLDB is able to work with
output compiled with -gsplit-dwarf=single flag correctly.
Differential revision: https://reviews.llvm.org/D52296
llvm-svn: 346848
This patch processes the case of retrieving a virtual base when the object is
already read from the debuggee memory.
To achieve that ValueObject::GetCPPVTableAddress was removed and was
reimplemented in ClangASTContext (because access to the process is needed to
retrieve the VTable pointer in general, and because this is the only place that
used old version of ValueObject::GetCPPVTableAddress).
This patch allows to use real object's VTable instead of searching virtual bases
by offsets restored by MicrosoftRecordLayoutBuilder. PDB has no enough info to
restore VBase offsets properly, so we have to read real VTable instead.
Differential revision: https://reviews.llvm.org/D53506
llvm-svn: 346669
This patch removes the comments grouping header includes. They were
added after running IWYU over the LLDB codebase. However they add little
value, are often outdates and burdensome to maintain.
llvm-svn: 346626
This patch removes the comments following the header includes. They were
added after running IWYU over the LLDB codebase. However they add little
value, are often outdates and burdensome to maintain.
Differential revision: https://reviews.llvm.org/D54385
llvm-svn: 346625
This moves construction of data buffers into the FileSystem class. Like
some of the previous refactorings we don't translate the path yet
because the functionality hasn't been landed in LLVM yet.
Differential revision: https://reviews.llvm.org/D54272
llvm-svn: 346598
There are two bugs here. The first is that MSVC and clang-cl
emit their bss section under the name '.data' instead of '.bss'
but with the size and file offset set to 0. ObjectFilePECOFF
didn't handle this, and would only recognize a section as bss
if it was actually called '.bss'. The effect of this is that
if we tried to print the value of a variable that lived in BSS
we would fail.
The second bug is that ValueObjectVariable was only returning
the forward type, which is insufficient to print the value of an
enum. So we bump this up to the layout type.
Differential Revision: https://reviews.llvm.org/D54241
llvm-svn: 346430
Replace calls to LLVM's is_directory with calls to LLDB's FileSytem
class. For this I introduced a new convenience method that, like the
other methods, takes either a path or filespec. This still uses the LLVM
functions under the hood.
Differential revision: https://reviews.llvm.org/D54135
llvm-svn: 346375
Clang recently improved its DWARF support for C VLA types. The DWARF
now looks like this:
0x00000051: DW_TAG_variable [4]
DW_AT_location( fbreg -32 )
DW_AT_name( "__vla_expr" )
DW_AT_type( {0x000000d3} ( long unsigned int ) )
DW_AT_artificial( true )
...
0x000000da: DW_TAG_array_type [10] *
DW_AT_type( {0x000000cc} ( int ) )
0x000000df: DW_TAG_subrange_type [11]
DW_AT_type( {0x000000e9} ( __ARRAY_SIZE_TYPE__ ) )
DW_AT_count( {0x00000051} )
Without this patch LLDB will naively interpret the DIE offset 0x51 as
the static size of the array, which is clearly wrong. This patch
extends ValueObject::GetNumChildren to query the dynamic properties of
incomplete array types.
See the testcase for an example:
4 int foo(int a) {
5 int vla[a];
6 for (int i = 0; i < a; ++i)
7 vla[i] = i;
8
-> 9 pause(); // break here
10 return vla[a-1];
11 }
(lldb) fr v vla
(int []) vla = ([0] = 0, [1] = 1, [2] = 2, [3] = 3)
(lldb) quit
rdar://problem/21814005
Differential Revision: https://reviews.llvm.org/D53530
llvm-svn: 346165
This patch modifies how we open File instances in LLDB. Rather than
passing a path or FileSpec to the constructor, we now go through the
virtual file system. This is needed in order to make things work with
the VFS in the future.
Differential revision: https://reviews.llvm.org/D54020
llvm-svn: 346049
This patch removes the logic for resolving paths out of FileSpec and
updates call sites to rely on the FileSystem class instead.
Differential revision: https://reviews.llvm.org/D53915
llvm-svn: 345890
This patch removes the Exists method from FileSpec and updates its uses
with calls to the FileSystem.
Differential revision: https://reviews.llvm.org/D53845
llvm-svn: 345854
This patch removes the GetByteSize method from FileSpec and updates its
uses with calls to the FileSystem.
Differential revision: https://reviews.llvm.org/D53788
llvm-svn: 345812
This patch moves the EnumerateDirectory functionality and related enum
and typedef from FileSpec to FileSystem.
This is part of a set of patches that extracts file system related
convenience methods from FileSpec. The long term goal is to remove this
method altogether and use the iterators directly, but for introducing
the VFS into LLDB this change is sufficient.
Differential revision: https://reviews.llvm.org/D53785
llvm-svn: 345800
This patch extends the FileSystem class with a bunch of functions that
are currently implemented as methods of the FileSpec class. These
methods will be removed in future commits and replaced by calls to the
file system.
The new functions are operated in terms of the virtual file system which
was recently moved from clang into LLVM so it could be reused in lldb.
Because the VFS is stateful, we turned the FileSystem class into a
singleton.
Differential revision: https://reviews.llvm.org/D53532
llvm-svn: 345783
This is similar to D53597, but following up with 2 more enums.
After this, all flag enums should be strongly typed all the way
through to the symbol files plugins.
Differential Revision: https://reviews.llvm.org/D53616
llvm-svn: 345314
When we get the `resolve_scope` parameter from the SB API, it's a
`uint32_t`. We then pass it through all of LLDB this way, as a uint32.
This is unfortunate, because it means the user of an API never actually
knows what they're dealing with. We can call it something like
`resolve_scope` and have comments saying "this is a value from the
`SymbolContextItem` enumeration, but it makes more sense to just have it
actually *be* the correct type in the actual C++ type system to begin
with. This way the person reading the code just knows what it is.
The reason to use integers instead of enumerations for flags is because
when you do bitwise operations on enumerations they get promoted to
integers, so it makes it tedious to constantly be casting them back
to the enumeration types, so I've introduced a macro to make this
happen magically. By writing LLDB_MARK_AS_BITMASK_ENUM after defining
an enumeration, it will define overloaded operators so that the
returned type will be the original enum. This should address all
the mechanical issues surrounding using rich enum types directly.
This way, we get a better debugger experience, and new users to
the codebase can get more easily acquainted with the codebase because
their IDE features can help them understand what the types mean.
Differential Revision: https://reviews.llvm.org/D53597
llvm-svn: 345313
This implements the support for .debug_loclists section, which is
DWARF 5 version of .debug_loc.
Currently, clang is able to emit it with the use of D53365.
Differential revision: https://reviews.llvm.org/D53436
llvm-svn: 345016
Some backends might violate this assumption. No test case
upstream unfortunately as this is not the case with C++,
but I'm going to add a test in swift language support.
<rdar://problem/40962410>
llvm-svn: 344982
This adds a basic support of the .debug_rnglists section.
Only the DW_RLE_start_length and DW_RLE_end_of_list entries are supported.
Differential revision: https://reviews.llvm.org/D52981
llvm-svn: 344119
This patch teaches lldb to detect when there are missing frames in a
backtrace due to a sequence of tail calls, and to fill in the backtrace
with artificial tail call frames when this happens. This is only done
when the execution history can be determined from the call graph and
from the return PC addresses of calls on the stack. Ambiguous sequences
of tail calls (e.g anything involving tail calls and recursion) are
detected and ignored.
Depends on D49887.
Differential Revision: https://reviews.llvm.org/D50478
llvm-svn: 343900