In r322867, we introduced IsStandalone when printing MIR in -debug
output. The default behaviour for that was:
1) If any of MBB, MI, or MO are -debug-printed separately, don't omit any
redundant information.
2) When -debug-printing a MF entirely, don't print any redundant
information.
3) When printing MIR, don't print any redundant information.
I'd like to change 2) to:
2) When -debug-printing a MF entirely, don't omit any redundant information.
Differential Revision: https://reviews.llvm.org/D43337
llvm-svn: 326094
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
As part of the unification of the debug format and the MIR format, avoid
printing "vreg" for virtual registers (which is one of the current MIR
possibilities).
Basically:
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/%vreg([0-9]+)/%\1/g"
* grep -nr '%vreg' . and fix if needed
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/ vreg([0-9]+)/ %\1/g"
* grep -nr 'vreg[0-9]\+' . and fix if needed
Differential Revision: https://reviews.llvm.org/D40420
llvm-svn: 319427
Generate the slowest possible codepath for noopt CodeGen. Even trying to be
clever with the negated jump can cause out-of-range jumps. Use a wide branch
instead. Although the code is modelled simplistically, the later optimizations
would recombine the branching into `cbz` if possible. This re-enables the
previous optimization as well as hopefully gives us working code in all cases.
Addresses PR30356!
llvm-svn: 285649
The Windows ARM target expects the compiler to emit a division-by-zero check.
The check would use the form of:
cmp r?, #0
cbz .Ltrap
b .Lbody
.Lbody:
...
.Ltrap:
udf #249 @ __brkdiv0
This works great most of the time. However, if the body of the function is
greater than 127 bytes, the branch target limitation of cbz becomes an issue.
This occurs in the unoptimized code generation cases sometimes (like in
compiler-rt).
Since this is a matter of correctness, possibly pay a small penalty instead. We
now form this slightly differently:
cbnz .Lbody
udf #249 @ __brkdiv0
.Lbody:
...
The positive case is through the branch instead of being the next instruction.
However, because of the basic block layout, the negated branch is going to be
a short distance always (2 bytes away, after the inserted __brkdiv0).
The new t__brkdiv0 instruction is required to explicitly mark the instruction as
a terminator as the generic UDF instruction is not a terminator.
Addresses PR30532!
llvm-svn: 285312
Reapplying r283383 after revert in r283442. The additional fix
is a getting rid of a stray space in a function name, in the
refactoring part of the commit.
This avoids falling back to calling out to the GCC rem functions
(__moddi3, __umoddi3) when targeting Windows.
The __rt_div functions have flipped the two arguments compared
to the __aeabi_divmod functions. To match MSVC, we emit a
check for division by zero before actually calling the library
function (even if the library function itself also might do
the same check).
Not all calls to __rt_div functions for division are currently
merged with calls to the same function with the same parameters
for the remainder. This is more wasteful than a div + mls as before,
but avoids calls to __moddi3.
Differential Revision: https://reviews.llvm.org/D25332
llvm-svn: 283550
This reverts commit r283383 because it broke some of the bots:
undefined reference to ` __aeabi_uldivmod'
It affected (at least) clang-cmake-armv7-a15-selfhost,
clang-cmake-armv7-a15-selfhost and clang-native-arm-lnt.
llvm-svn: 283442
This avoids falling back to calling out to the GCC rem functions
(__moddi3, __umoddi3) when targeting Windows.
The __rt_div functions have flipped the two arguments compared
to the __aeabi_divmod functions. To match MSVC, we emit a
check for division by zero before actually calling the library
function (even if the library function itself also might do
the same check).
Not all calls to __rt_div functions for division are currently
merged with calls to the same function with the same parameters
for the remainder. This is more wasteful than a div + mls as before,
but avoids calls to __moddi3.
Differential Revision: https://reviews.llvm.org/D24076
llvm-svn: 283383
This corrects the MI annotations for the stack adjustment following the __chkstk
invocation. We were marking the original SP usage as a Def rather than Kill.
The (new) assigned value is the definition, the original reference is killed.
Adjust the ISelLowering to mark Kills and FrameSetup as well.
This partially resolves PR27480.
llvm-svn: 267361
Rather than checking both stdout and stderr simultaneously, split it into two
tests. This apparently breaks on Windows where MSVCRT does not buffer output
correctly. NFC.
Thanks to chapuni for bringing the issue to my attention!
llvm-svn: 267179
WIN__DBZCHK will insert a CBZ instruction into the stream. This instruction
reserves 3 bits for the condition register (rn). As such, we must ensure that
we restrict the register to a low register. Use the tGPR class instead of GPR
to ensure that this is properly constrained. In debug builds, we would attempt
to use lr as a condition register which would silently get truncated with no
hint that the register selection was incorrect.
llvm-svn: 267080
It is possible to have a fallthrough MBB prior to MBB placement. The original
addition of the BB would result in reordering the BB as not preceding the
successor. Because of the fallthrough nature of the BB, we could end up
executing incorrect code or even a constant pool island! Insert the spliced BB
into the same location to avoid that.
Thanks to Tim Northover for invaluable hints and Fiora for the discussion on
what may have been occurring!
llvm-svn: 264454
The two changes together weakened the test and caused a regression with division
handling in MSVC mode. They were applied to avoid an assertion being triggered
in the block frequency analysis. However, the underlying problem was simply
being masked rather than solved properly. Address the actual underlying problem
and revert the changes. Rather than analyze the cause of the assertion, the
division failure was assumed to be an overflow.
The underlying issue was a subtle bug in the BB construction in the emission of
the div-by-zero check (WIN__DBZCHK). We did not construct the proper successor
information in the basic blocks, nor did we update the PHIs associated with the
basic block when we split them. This would result in assertions being triggered
in the block frequency analysis pass.
Although the original tests are being removed, the tests themselves performed
very little in terms of validation but merely tested that we did not assert when
generating code. Update this with new tests that actually ensure that we do not
regress on the code generation.
llvm-svn: 263714