Commit Graph

118 Commits

Author SHA1 Message Date
Richard Smith ade53736b0 Revert r325128 ("[X86] Reduce Store Forward Block issues in HW").
This is causing miscompiles in some situations. See the llvm-commits thread for the commit for details.

llvm-svn: 325852
2018-02-23 01:43:46 +00:00
Lama Saba fe1016c485 [X86] Reduce Store Forward Block issues in HW - Recommit after fixing Bug 36346
If a load follows a store and reloads data that the store has written to memory, Intel microarchitectures can in many cases forward the data directly from the store to the load, This "store forwarding" saves cycles by enabling the load to directly obtain the data instead of accessing the data from cache or memory.
A "store forward block" occurs in cases that a store cannot be forwarded to the load. The most typical case of store forward block on Intel Core microarchiticutre that a small store cannot be forwarded to a large load.
The estimated penalty for a store forward block is ~13 cycles.

This pass tries to recognize and handle cases where "store forward block" is created by the compiler when lowering memcpy calls to a sequence
of a load and a store.

The pass currently only handles cases where memcpy is lowered to XMM/YMM registers, it tries to break the memcpy into smaller copies.
breaking the memcpy should be possible since there is no atomicity guarantee for loads and stores to XMM/YMM.

Change-Id: Ic41aa9ade6512e0478db66e07e2fde41b4fb35f9
llvm-svn: 325128
2018-02-14 14:58:53 +00:00
Hans Wennborg 7e19dfc45f Revert r324835 "[X86] Reduce Store Forward Block issues in HW"
It asserts building Chromium; see PR36346.

(This also reverts the follow-up r324836.)

> If a load follows a store and reloads data that the store has written to memory, Intel microarchitectures can in many cases forward the data directly from the store to the load, This "store forwarding" saves cycles by enabling the load to directly obtain the data instead of accessing the data from cache or memory.
> A "store forward block" occurs in cases that a store cannot be forwarded to the load. The most typical case of store forward block on Intel Core microarchiticutre that a small store cannot be forwarded to a large load.
> The estimated penalty for a store forward block is ~13 cycles.
>
> This pass tries to recognize and handle cases where "store forward block" is created by the compiler when lowering memcpy calls to a sequence
> of a load and a store.
>
> The pass currently only handles cases where memcpy is lowered to XMM/YMM registers, it tries to break the memcpy into smaller copies.
> breaking the memcpy should be possible since there is no atomicity guarantee for loads and stores to XMM/YMM.

llvm-svn: 324887
2018-02-12 12:43:39 +00:00
Lama Saba c2ba6c387e [X86] Reduce Store Forward Block issues in HW
If a load follows a store and reloads data that the store has written to memory, Intel microarchitectures can in many cases forward the data directly from the store to the load, This "store forwarding" saves cycles by enabling the load to directly obtain the data instead of accessing the data from cache or memory.
A "store forward block" occurs in cases that a store cannot be forwarded to the load. The most typical case of store forward block on Intel Core microarchiticutre that a small store cannot be forwarded to a large load.
The estimated penalty for a store forward block is ~13 cycles.

This pass tries to recognize and handle cases where "store forward block" is created by the compiler when lowering memcpy calls to a sequence
of a load and a store.

The pass currently only handles cases where memcpy is lowered to XMM/YMM registers, it tries to break the memcpy into smaller copies.
breaking the memcpy should be possible since there is no atomicity guarantee for loads and stores to XMM/YMM.

Change-Id: I620b6dc91583ad9a1444591e3ddc00dd25d81748
llvm-svn: 324835
2018-02-11 09:34:12 +00:00
Chandler Carruth c58f2166ab Introduce the "retpoline" x86 mitigation technique for variant #2 of the speculative execution vulnerabilities disclosed today, specifically identified by CVE-2017-5715, "Branch Target Injection", and is one of the two halves to Spectre..
Summary:
First, we need to explain the core of the vulnerability. Note that this
is a very incomplete description, please see the Project Zero blog post
for details:
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

The basis for branch target injection is to direct speculative execution
of the processor to some "gadget" of executable code by poisoning the
prediction of indirect branches with the address of that gadget. The
gadget in turn contains an operation that provides a side channel for
reading data. Most commonly, this will look like a load of secret data
followed by a branch on the loaded value and then a load of some
predictable cache line. The attacker then uses timing of the processors
cache to determine which direction the branch took *in the speculative
execution*, and in turn what one bit of the loaded value was. Due to the
nature of these timing side channels and the branch predictor on Intel
processors, this allows an attacker to leak data only accessible to
a privileged domain (like the kernel) back into an unprivileged domain.

The goal is simple: avoid generating code which contains an indirect
branch that could have its prediction poisoned by an attacker. In many
cases, the compiler can simply use directed conditional branches and
a small search tree. LLVM already has support for lowering switches in
this way and the first step of this patch is to disable jump-table
lowering of switches and introduce a pass to rewrite explicit indirectbr
sequences into a switch over integers.

However, there is no fully general alternative to indirect calls. We
introduce a new construct we call a "retpoline" to implement indirect
calls in a non-speculatable way. It can be thought of loosely as
a trampoline for indirect calls which uses the RET instruction on x86.
Further, we arrange for a specific call->ret sequence which ensures the
processor predicts the return to go to a controlled, known location. The
retpoline then "smashes" the return address pushed onto the stack by the
call with the desired target of the original indirect call. The result
is a predicted return to the next instruction after a call (which can be
used to trap speculative execution within an infinite loop) and an
actual indirect branch to an arbitrary address.

On 64-bit x86 ABIs, this is especially easily done in the compiler by
using a guaranteed scratch register to pass the target into this device.
For 32-bit ABIs there isn't a guaranteed scratch register and so several
different retpoline variants are introduced to use a scratch register if
one is available in the calling convention and to otherwise use direct
stack push/pop sequences to pass the target address.

This "retpoline" mitigation is fully described in the following blog
post: https://support.google.com/faqs/answer/7625886

We also support a target feature that disables emission of the retpoline
thunk by the compiler to allow for custom thunks if users want them.
These are particularly useful in environments like kernels that
routinely do hot-patching on boot and want to hot-patch their thunk to
different code sequences. They can write this custom thunk and use
`-mretpoline-external-thunk` *in addition* to `-mretpoline`. In this
case, on x86-64 thu thunk names must be:
```
  __llvm_external_retpoline_r11
```
or on 32-bit:
```
  __llvm_external_retpoline_eax
  __llvm_external_retpoline_ecx
  __llvm_external_retpoline_edx
  __llvm_external_retpoline_push
```
And the target of the retpoline is passed in the named register, or in
the case of the `push` suffix on the top of the stack via a `pushl`
instruction.

There is one other important source of indirect branches in x86 ELF
binaries: the PLT. These patches also include support for LLD to
generate PLT entries that perform a retpoline-style indirection.

The only other indirect branches remaining that we are aware of are from
precompiled runtimes (such as crt0.o and similar). The ones we have
found are not really attackable, and so we have not focused on them
here, but eventually these runtimes should also be replicated for
retpoline-ed configurations for completeness.

For kernels or other freestanding or fully static executables, the
compiler switch `-mretpoline` is sufficient to fully mitigate this
particular attack. For dynamic executables, you must compile *all*
libraries with `-mretpoline` and additionally link the dynamic
executable and all shared libraries with LLD and pass `-z retpolineplt`
(or use similar functionality from some other linker). We strongly
recommend also using `-z now` as non-lazy binding allows the
retpoline-mitigated PLT to be substantially smaller.

When manually apply similar transformations to `-mretpoline` to the
Linux kernel we observed very small performance hits to applications
running typical workloads, and relatively minor hits (approximately 2%)
even for extremely syscall-heavy applications. This is largely due to
the small number of indirect branches that occur in performance
sensitive paths of the kernel.

When using these patches on statically linked applications, especially
C++ applications, you should expect to see a much more dramatic
performance hit. For microbenchmarks that are switch, indirect-, or
virtual-call heavy we have seen overheads ranging from 10% to 50%.

However, real-world workloads exhibit substantially lower performance
impact. Notably, techniques such as PGO and ThinLTO dramatically reduce
the impact of hot indirect calls (by speculatively promoting them to
direct calls) and allow optimized search trees to be used to lower
switches. If you need to deploy these techniques in C++ applications, we
*strongly* recommend that you ensure all hot call targets are statically
linked (avoiding PLT indirection) and use both PGO and ThinLTO. Well
tuned servers using all of these techniques saw 5% - 10% overhead from
the use of retpoline.

We will add detailed documentation covering these components in
subsequent patches, but wanted to make the core functionality available
as soon as possible. Happy for more code review, but we'd really like to
get these patches landed and backported ASAP for obvious reasons. We're
planning to backport this to both 6.0 and 5.0 release streams and get
a 5.0 release with just this cherry picked ASAP for distros and vendors.

This patch is the work of a number of people over the past month: Eric, Reid,
Rui, and myself. I'm mailing it out as a single commit due to the time
sensitive nature of landing this and the need to backport it. Huge thanks to
everyone who helped out here, and everyone at Intel who helped out in
discussions about how to craft this. Also, credit goes to Paul Turner (at
Google, but not an LLVM contributor) for much of the underlying retpoline
design.

Reviewers: echristo, rnk, ruiu, craig.topper, DavidKreitzer

Subscribers: sanjoy, emaste, mcrosier, mgorny, mehdi_amini, hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D41723

llvm-svn: 323155
2018-01-22 22:05:25 +00:00
Oren Ben Simhon 1c6308ecd5 Instrument Control Flow For Indirect Branch Tracking
CET (Control-Flow Enforcement Technology) introduces a new mechanism called IBT (Indirect Branch Tracking).
According to IBT, each Indirect branch should land on dedicated ENDBR instruction (End Branch).
The new pass adds ENDBR instructions for every indirect jmp/call (including jumps using jump tables / switches).
For more information, please see the following:
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

Differential Revision: https://reviews.llvm.org/D40482

Change-Id: Icb754489faf483a95248f96982a4e8b1009eb709
llvm-svn: 322062
2018-01-09 08:51:18 +00:00
Craig Topper e9f44e1b80 [X86] Revert accidental change to CMakeLists.txt in r321952
I had removed the qualifiers around the autogenerated folding table so I could compare with the manual table, but didn't intend to commit the change.

llvm-svn: 321971
2018-01-07 21:03:43 +00:00
Craig Topper a124ab10ef [X86] Add some 8 and 16-bit instructions to the load folding tables.
llvm-svn: 321952
2018-01-07 06:24:25 +00:00
Guy Blank 92d5ce3bd4 [X86] Add a pass to convert instruction chains between domains.
The pass scans the function to find instruction chains that define
registers in the same domain (closures).
It then calculates the cost of converting the closure to another domain.
If found profitable, the instructions are converted to instructions in
the other domain and the register classes are changed accordingly.

This commit adds the pass infrastructure and a simple conversion from
the GPR domain to the Mask domain.

Differential Revision:
https://reviews.llvm.org/D37251

Change-Id: Ic2cf1d76598110401168326d411128ae2580a604
llvm-svn: 316288
2017-10-22 11:43:08 +00:00
Ayman Musa 993339b941 [X86][TableGen] Recommitting the X86 memory folding tables TableGen backend while disabling it by default.
After the original commit ([[ https://reviews.llvm.org/rL304088 | rL304088 ]]) was reverted, a discussion in llvm-dev was opened on 'how to accomplish this task'.
In the discussion we concluded that the best way to achieve our goal (which is to automate the folding tables and remove the manually maintained tables) is:

 # Commit the tablegen backend disabled by default.

 # Proceed with an incremental updating of the manual tables - while checking the validity of each added entry.

 # Repeat previous step until we reach a state where the generated and the manual tables are identical. Then we can safely remove the manual tables and include the generated tables instead.

 # Schedule periodical (1 week/2 weeks/1 month) runs of the pass:

   - if changes appear (new entries):
      - make sure the entries are legal
      - If they are not, mark them as illegal to folding
   - Commit the changes (if there are any).

CMake flag added for this purpose is "X86_GEN_FOLD_TABLES". Building with this flags will run the pass and emit the X86GenFoldTables.inc file under build/lib/Target/X86/ directory which is a good reference for any developer who wants to take part in the effort of completing the current folding tables.

Differential Revision: https://reviews.llvm.org/D38028

llvm-svn: 315173
2017-10-08 09:20:32 +00:00
Quentin Colombet 250e050a50 [GlobalISel] Make GlobalISel a non-optional library.
With this change, the GlobalISel library gets always built. In
particular, this is not possible to opt GlobalISel out of the build
using the LLVM_BUILD_GLOBAL_ISEL variable any more.

llvm-svn: 309990
2017-08-03 21:52:25 +00:00
Amjad Aboud 4563c062b1 [X86] X86::CMOV to Branch heuristic based optimization.
LLVM compiler recognizes opportunities to transform a branch into IR select instruction(s) - later it will be lowered into X86::CMOV instruction, assuming no other optimization eliminated the SelectInst.
However, it is not always profitable to emit X86::CMOV instruction. For example, branch is preferable over an X86::CMOV instruction when:
1. Branch is well predicted
2. Condition operand is expensive, compared to True-value and the False-value operands

In CodeGenPrepare pass there is a shallow optimization that tries to convert SelectInst into branch, but it is not enough.
This commit, implements machine optimization pass that converts X86::CMOV instruction(s) into branch, based on a conservative heuristic.

Differential Revision: https://reviews.llvm.org/D34769

llvm-svn: 308142
2017-07-16 17:39:56 +00:00
Chandler Carruth 41ed4034dd [x86] Revert the X86FoldTablesEmitter due to more miscompiles.
In testing, we've found yet another miscompile caused by the new tables.
And this one is even less clear how to fix (we could teach it to fold
a 16-bit load instead of the 32-bit load it wants, or block folding
entirely).

Also, the approach to excluding instructions seems increasingly to not
scale well.

I have left a more detailed analysis on the review log for the original
patch (https://reviews.llvm.org/D32684) along with suggested path
forward. I will land an additional test case that I wrote which covers
the code that was miscompiling (folding into the output of `pextrw`) in
a subsequent commit to keep this a pure revert.

For each commit reverted here, I've restricted the revert to the
non-test code touching the x86 fold table emission until the last commit
where I did revert the test updates. This means the *new* test cases
added for `insertps` and `xchg` remain untouched (and continue to pass).

Reverted commits:
r304540: [X86] Don't fold into memory operands into insertps in the ...
r304347: [TableGen] Adapt more places to getValueAsString now ...
r304163: [X86] Don't fold away the memory operand of an xchg.
r304123: Don't capture a temporary std::string in a StringRef.
r304122: Resubmit "[X86] Adding new LLVM TableGen backend that ..."

Original commit was in r304088, and after a string of fixes was reverted
previously in r304121 to fix build bots, and then re-landed in r304122.

llvm-svn: 304762
2017-06-06 02:15:31 +00:00
Zachary Turner df1832cf86 Resubmit "[X86] Adding new LLVM TableGen backend that generates the X86 backend memory folding tables."
This was reverted due to buildbot breakages and I was not familiar
with this code to investigate it.  But while trying to get a
useful backtrace for the author, it turns out the fix was very
obvious.  Resubmitting this patch as is, and will submit the
fix in a followup so that the fix is not hidden in the larger
CL.

llvm-svn: 304122
2017-05-29 02:19:37 +00:00
Zachary Turner 5b199be769 Revert "[X86] Adding new LLVM TableGen backend that generates the X86 backend memory folding tables."
This reverts commit 28cb1003507f287726f43c771024a1dc102c45fe as well
as all subsequent followups.  llvm-tblgen currently segfaults with
this change, and it seems it has been broken on the bots all
day with no fixes in preparation.  See, for example:

http://lab.llvm.org:8011/builders/clang-x86-windows-msvc2015/

llvm-svn: 304121
2017-05-29 01:48:53 +00:00
Ayman Musa d9f1fe43a8 [X86] Adding new LLVM TableGen backend that generates the X86 backend memory folding tables.
X86 backend holds huge tables in order to map between the register and memory forms of each instruction.
This TableGen Backend automatically generated all these tables with the appropriate flags for each entry.

Differential Revision: https://reviews.llvm.org/D32684

llvm-svn: 304088
2017-05-28 12:55:36 +00:00
Ayman Musa 850fc977c8 [X86][AVX512] Adding new LLVM TableGen backend which generates the EVEX2VEX compressing tables.
X86EvexToVex machine instruction pass compresses EVEX encoded instructions by replacing them with their identical VEX encoded instructions when possible.
It uses manually supported 2 large tables that map the EVEX instructions to their VEX ideticals.
This TableGen backend replaces the tables by automatically generating them.

Differential Revision: https://reviews.llvm.org/D30451

llvm-svn: 297127
2017-03-07 08:11:19 +00:00
Igor Breger f7359d893a [X86][GlobalISel] Initial implementation , select G_ADD gpr, gpr
Summary: Initial implementation for X86InstructionSelector. Handle selection COPY and G_ADD/G_SUB gpr, gpr .

Reviewers: qcolombet, rovka, zvi, ab

Reviewed By: rovka

Subscribers: mgorny, dberris, kristof.beyls, llvm-commits

Differential Revision: https://reviews.llvm.org/D29816

llvm-svn: 295824
2017-02-22 12:25:09 +00:00
Igor Breger b4442f34cd [X86][GlobalISel] Add general-purpose Register Bank
Summary:
[X86][GlobalISel] Add general-purpose Register Bank.
Add trivial  handling of G_ADD legalization .
Add Regestry Bank selection for COPY and G_ADD  instructions

Reviewers: rovka, zvi, ab, t.p.northover, qcolombet

Reviewed By: qcolombet

Subscribers: qcolombet, mgorny, dberris, kristof.beyls, llvm-commits

Differential Revision: https://reviews.llvm.org/D29771

llvm-svn: 294723
2017-02-10 07:05:56 +00:00
Evandro Menezes 94edf02923 [CodeGen] Move MacroFusion to the target
This patch moves the class for scheduling adjacent instructions,
MacroFusion, to the target.

In AArch64, it also expands the fusion to all instructions pairs in a
scheduling block, beyond just among the predecessors of the branch at the
end.

Differential revision: https://reviews.llvm.org/D28489

llvm-svn: 293737
2017-02-01 02:54:34 +00:00
Gadi Haber 19c4fc5e62 This is a large patch for X86 AVX-512 of an optimization for reducing code size by encoding EVEX AVX-512 instructions using the shorter VEX encoding when possible.
There are cases of AVX-512 instructions that have two possible encodings. This is the case with instructions that use vector registers with low indexes of 0 - 15 and do not use the zmm registers or the mask k registers.
The EVEX encoding prefix requires 4 bytes whereas the VEX prefix can take only up to 3 bytes. Consequently, using the VEX encoding for these instructions results in a code size reduction of ~2 bytes even though it is compiled with the AVX-512 features enabled.

Reviewers: Craig Topper, Zvi Rackoover, Elena Demikhovsky 
Differential Revision: https://reviews.llvm.org/D27901

llvm-svn: 290663
2016-12-28 10:12:48 +00:00
Oren Ben Simhon 489d6eff4f [X86] RegCall - Handling v64i1 in 32/64 bit target
Register Calling Convention defines a new behavior for v64i1 types.
This type should be saved in GPR.
However for 32 bit machine we need to split the value into 2 GPRs (because each is 32 bit).

Differential Revision: https://reviews.llvm.org/D26181

llvm-svn: 287217
2016-11-17 09:59:40 +00:00
Zvi Rackover 76dbf26599 [X86][GlobalISel] Add minimal call lowering support to the IRTranslator
Summary:
    Add basic functionality to support call lowering for X86.
    Currently only supports functions which return void and take zero arguments.
    Inspired by commit 286573.

Reviewers: ab, qcolombet, t.p.northover

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D26593

llvm-svn: 286935
2016-11-15 06:34:33 +00:00
David L Kreitzer 01a057a0c4 Add a pass to optimize patterns of vectorized interleaved memory accesses for
X86. The pass optimizes as a unit the entire wide load + shuffles pattern
produced by interleaved vectorization. This initial patch optimizes one pattern
(64-bit elements interleaved by a factor of 4). Future patches will generalize
to additional patterns.

Patch by Farhana Aleen

Differential revision: http://reviews.llvm.org/D24681

llvm-svn: 284260
2016-10-14 18:20:41 +00:00
Vyacheslav Klochkov 6daefcf626 X86-FMA3: Implemented commute transformation for EVEX/AVX512 FMA3 opcodes.
This helped to improved memory-folding and register coalescing optimizations.

Also, this patch fixed the tracker #17229.

Reviewer: Craig Topper.
Differential Revision: https://reviews.llvm.org/D23108

llvm-svn: 278431
2016-08-11 22:07:33 +00:00
Michael Kuperstein 3e3652aef2 Recommit r274692 - [X86] Transform setcc + movzbl into xorl + setcc
xorl + setcc is generally the preferred sequence due to the partial register
stall setcc + movzbl suffers from. As a bonus, it also encodes one byte smaller.
This fixes PR28146.

The original commit tried inserting an 8bit-subreg into a GR32 (not GR32_ABCD)
which was not appreciated by fast regalloc on 32-bit.

llvm-svn: 274802
2016-07-07 22:50:23 +00:00
Michael Kuperstein edb38a94f8 Revert r274692 to check whether this is what breaks windows selfhost.
llvm-svn: 274771
2016-07-07 16:55:35 +00:00
Michael Kuperstein 1ef6c59b1d [X86] Transform setcc + movzbl into xorl + setcc
xorl + setcc is generally the preferred sequence due to the partial register
stall setcc + movzbl suffers from. As a bonus, it also encodes one byte smaller.

This fixes PR28146.

Differential Revision: http://reviews.llvm.org/D21774

llvm-svn: 274692
2016-07-06 21:56:18 +00:00
Michael Kuperstein 85de98fd24 [X86] Reorder source list alphabetically. NFC.
llvm-svn: 274036
2016-06-28 17:11:15 +00:00
Hans Wennborg 8eb336c14e Re-commit r269828 "X86: Avoid using _chkstk when lowering WIN_ALLOCA instructions"
with an additional fix to make RegAllocFast ignore undef physreg uses. It would
previously get confused about the "push %eax" instruction's use of eax. That
method for adjusting the stack pointer is used in X86FrameLowering::emitSPUpdate
as well, but since that runs after register-allocation, we didn't run into the
RegAllocFast issue before.

llvm-svn: 269949
2016-05-18 16:10:17 +00:00
Hans Wennborg 759af30109 Revert r269828 "X86: Avoid using _chkstk when lowering WIN_ALLOCA instructions"
Seems to have broken the Windows ASan bot. Reverting while investigating.

llvm-svn: 269833
2016-05-17 20:38:56 +00:00
Hans Wennborg c3fb51171e X86: Avoid using _chkstk when lowering WIN_ALLOCA instructions
This patch moves the expansion of WIN_ALLOCA pseudo-instructions
into a separate pass that walks the CFG and lowers the instructions
based on a conservative estimate of the offset between the stack
pointer and the lowest accessed stack address.

The goal is to reduce binary size and run-time costs by removing
calls to _chkstk. While it doesn't fix all the code quality problems
with inalloca calls, it's an incremental improvement for PR27076.

Differential Revision: http://reviews.llvm.org/D20263

llvm-svn: 269828
2016-05-17 20:13:29 +00:00
Kevin B. Smith 6a83350bee [X86] New pass to change byte and word instructions to zero-extending versions.
Differential Revision: http://reviews.llvm.org/D17032

llvm-svn: 260572
2016-02-11 19:43:04 +00:00
Craig Topper 69653af748 [X86] Move shuffle decoding for constant pool into the X86CodeGen library to remove a layering violation in the Util library.
llvm-svn: 256680
2015-12-31 22:40:45 +00:00
Alexey Bataev 7cf324772f LEA code size optimization pass (Part 1): Remove redundant address recalculations, by Andrey Turetsky
Add new x86 pass which replaces address calculations in load or store instructions with def register of existing LEA (must be in the same basic block), if the LEA calculates address that differs only by a displacement. Works only with -Os or -Oz.
Differential Revision: http://reviews.llvm.org/D13294

llvm-svn: 254712
2015-12-04 10:53:15 +00:00
Eric Christopher 227d71bba6 Remove the last traces of X86CompilationCallback as it is completely
unused.

llvm-svn: 251035
2015-10-22 17:55:35 +00:00
Quentin Colombet 494eb606cd Reapply r238011 with a fix for the trap instruction.
The problem was that I slipped a change required for shrink-wrapping, namely I
used getFirstTerminator instead of the getLastNonDebugInstr that was here before
the refactoring, whereas the surrounding code is not yet patched for that.

Original message:
[X86] Refactor the prologue emission to prepare for shrink-wrapping.

- Add a late pass to expand pseudo instructions (tail call and EH returns).
 Instead of doing it in the prologue emission.
- Factor some static methods in X86FrameLowering to ease code sharing.

NFC.

Related to <rdar://problem/20821487>

llvm-svn: 238035
2015-05-22 18:10:47 +00:00
Tamas Berghammer 466692abdc Revert "[X86] Fix a variable name for r237977 so that it works with every compilers."
Revert "[X86] Refactor the prologue emission to prepare for shrink-wrapping."

This reverts commit 6b3b93fc8b68a2c806aa992ee4bd3d7f61898d4b.
This reverts commit ab0b15dff8539826283a59c2dd700a18a9680e0f.

llvm-svn: 238011
2015-05-22 10:01:56 +00:00
Quentin Colombet faf4b57e1d [X86] Refactor the prologue emission to prepare for shrink-wrapping.
- Add a late pass to expand pseudo instructions (tail call and EH returns).
  Instead of doing it in the prologue emission.
- Factor some static methods in X86FrameLowering to ease code sharing.

NFC.

Related to <rdar://problem/20821487>

llvm-svn: 237977
2015-05-22 00:12:31 +00:00
Reid Kleckner 0738a9c02e Re-land "[WinEH] Add an EH registration and state insertion pass for 32-bit x86"
This reverts commit r236360.

This change exposed a bug in WinEHPrepare by opting win32 code into EH
preparation. We already knew that WinEHPrepare has bugs, and is the
status quo for x64, so I don't think that's a reason to hold off on this
change. I disabled exceptions in the sanitizer tests in r236505 and an
earlier revision.

llvm-svn: 236508
2015-05-05 17:44:16 +00:00
Reid Kleckner 83d89fa546 Revert "[WinEH] Add an EH registration and state insertion pass for 32-bit x86"
This reverts commit r236359. Things are still broken despite testing. :(

llvm-svn: 236360
2015-05-01 22:50:14 +00:00
Reid Kleckner 51476acd77 Re-land "[WinEH] Add an EH registration and state insertion pass for 32-bit x86"
This reverts commit r236340.

llvm-svn: 236359
2015-05-01 22:40:25 +00:00
Reid Kleckner 2747d3d55a Revert "[WinEH] Add an EH registration and state insertion pass for 32-bit x86"
This reverts commit r236339, it breaks the win32 clang-cl self-host.

llvm-svn: 236340
2015-05-01 20:14:04 +00:00
Reid Kleckner 4856fc61b4 [WinEH] Add an EH registration and state insertion pass for 32-bit x86
This pass is responsible for constructing the EH registration object
that gets linked into fs:00, which is all it does in this change. In the
future, it will also insert stores to update the EH state number.

I considered keeping this functionality in WinEHPrepare, but it's pretty
separable and X86 specific. It has conceptually very little to do with
the task of WinEHPrepare, which is currently outlining.  WinEHPrepare is
also in theory useful on ARM, but this logic is pretty x86 specific.

Reviewers: andrew.w.kaylor, majnemer

Differential Revision: http://reviews.llvm.org/D9422

llvm-svn: 236339
2015-05-01 20:04:54 +00:00
Reid Kleckner e2008ae475 Pass /nologo to ml64 for quieter builds
It still prints "Assembling path/to/X86CompilationCallback_Win64.asm",
but linking does the same thing.

llvm-svn: 230596
2015-02-26 00:51:33 +00:00
Michael Kuperstein 13fbd45263 [X86] Convert esp-relative movs of function arguments to pushes, step 2
This moves the transformation introduced in r223757 into a separate MI pass.
This allows it to cover many more cases (not only cases where there must be a 
reserved call frame), and perform rudimentary call folding. It still doesn't 
have a heuristic, so it is enabled only for optsize/minsize, with stack 
alignment <= 8, where it ought to be a fairly clear win.

(Re-commit of r227728)

Differential Revision: http://reviews.llvm.org/D6789

llvm-svn: 227752
2015-02-01 16:56:04 +00:00
Michael Kuperstein e86aa9a8a4 Revert r227728 due to bad line endings.
llvm-svn: 227746
2015-02-01 16:15:07 +00:00
Michael Kuperstein bd57186c76 [X86] Convert esp-relative movs of function arguments to pushes, step 2
This moves the transformation introduced in r223757 into a separate MI pass.
This allows it to cover many more cases (not only cases where there must be a 
reserved call frame), and perform rudimentary call folding. It still doesn't 
have a heuristic, so it is enabled only for optsize/minsize, with stack 
alignment <= 8, where it ought to be a fairly clear win.

Differential Revision: http://reviews.llvm.org/D6789

llvm-svn: 227728
2015-02-01 11:44:44 +00:00
Robin Morisset 25c8e318e4 [X86] Use the generic AtomicExpandPass instead of X86AtomicExpandPass
This required a new hook called hasLoadLinkedStoreConditional to know whether
to expand atomics to LL/SC (ARM, AArch64, in a future patch Power) or to
CmpXchg (X86).

Apart from that, the new code in AtomicExpandPass is mostly moved from
X86AtomicExpandPass. The main result of this patch is to get rid of that
pass, which had lots of code duplicated with AtomicExpandPass.

llvm-svn: 217928
2014-09-17 00:06:58 +00:00
Eric Christopher 79cc1e3ae7 Reinstate "Nuke the old JIT."
Approved by Jim Grosbach, Lang Hames, Rafael Espindola.

This reinstates commits r215111, 215115, 215116, 215117, 215136.

llvm-svn: 216982
2014-09-02 22:28:02 +00:00