Commit Graph

147 Commits

Author SHA1 Message Date
Sander de Smalen 8b7b0ad24c [AArch64][SVE] NFC: Rename isOrig -> isReverseInstr
This is a non-functional to clarify some of the terminology in the
AArch64SVEInstrInfo/SVEInstrFormats.td files around the tables
for mapping an instruction to it's reverse instruction counter part,
and vice versa. e.g. DIV -> DIVR and DIVR -> DIV.

Reviewers: paulwalker-arm, cameron.mcinally, rengolin, efriedma

Reviewed By: paulwalker-arm, efriedma

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D82979
2020-07-02 17:01:15 +01:00
Kristof Beyls c35ed40f4f [AArch64] Extend AArch64SLSHardeningPass to harden BLR instructions.
To make sure that no barrier gets placed on the architectural execution
path, each
  BLR x<N>
instruction gets transformed to a
  BL __llvm_slsblr_thunk_x<N>
instruction, with __llvm_slsblr_thunk_x<N> a thunk that contains
__llvm_slsblr_thunk_x<N>:
  BR x<N>
  <speculation barrier>

Therefore, the BLR instruction gets split into 2; one BL and one BR.
This transformation results in not inserting a speculation barrier on
the architectural execution path.

The mitigation is off by default and can be enabled by the
harden-sls-blr subtarget feature.

As a linker is allowed to clobber X16 and X17 on function calls, the
above code transformation would not be correct in case a linker does so
when N=16 or N=17. Therefore, when the mitigation is enabled, generation
of BLR x16 or BLR x17 is avoided.

As BLRA* indirect calls are not produced by LLVM currently, this does
not aim to implement support for those.

Differential Revision:  https://reviews.llvm.org/D81402
2020-06-12 07:34:33 +01:00
Kristof Beyls 0ee176edc8 [AArch64] Introduce AArch64SLSHardeningPass, implementing hardening of RET and BR instructions.
Some processors may speculatively execute the instructions immediately
following RET (returns) and BR (indirect jumps), even though
control flow should change unconditionally at these instructions.
To avoid a potential miss-speculatively executed gadget after these
instructions leaking secrets through side channels, this pass places a
speculation barrier immediately after every RET and BR instruction.

Since these barriers are never on the correct, architectural execution
path, performance overhead of this is expected to be low.

On targets that implement that Armv8.0-SB Speculation Barrier extension,
a single SB instruction is emitted that acts as a speculation barrier.
On other targets, a DSB SYS followed by a ISB is emitted to act as a
speculation barrier.

These speculation barriers are implemented as pseudo instructions to
avoid later passes to analyze them and potentially remove them.

Even though currently LLVM does not produce BRAA/BRAB/BRAAZ/BRABZ
instructions, these are also mitigated by the pass and tested through a
MIR test.

The mitigation is off by default and can be enabled by the
harden-sls-retbr subtarget feature.

Differential Revision:  https://reviews.llvm.org/D81400
2020-06-11 07:51:17 +01:00
hsmahesha 0ed2c04636 [AMDGPU/MemOpsCluster] Let mem ops clustering logic also consider number of clustered bytes
Summary:
While clustering mem ops, AMDGPU target needs to consider number of clustered bytes
to decide on max number of mem ops that can be clustered. This patch adds support to pass
number of clustered bytes to target mem ops clustering logic.

Reviewers: foad, rampitec, arsenm, vpykhtin, javedabsar

Reviewed By: foad

Subscribers: MatzeB, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye, hiraditya, javed.absar, kerbowa, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D80545
2020-06-01 22:52:34 +05:30
Vedant Kumar 78d69e97cc [AArch64CondBrTuning] Ignore debug insts when scanning for NZCV clobbers [10/14]
Summary:
This fixes several instances in which condbr optimization was missed
due to a debug instruction appearing as a bogus NZCV clobber.

Reviewers: aemerson, paquette

Subscribers: kristof.beyls, hiraditya, jfb, danielkiss, aprantl, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D78264
2020-04-22 17:03:40 -07:00
Matt Arsenault 30ebafaa56 CodeGen: Convert some TII hooks to use Register 2020-04-03 14:52:54 -04:00
Cameron McInally a5b22b768f [AArch64][SVE] Add support for DestructiveBinary and DestructiveBinaryComm DestructiveInstTypes
Add support for DestructiveBinaryComm DestructiveInstType, as well as the lowering code to expand the new Pseudos into the final movprfx+instruction pairs.

Differential Revision: https://reviews.llvm.org/D73711
2020-02-21 15:19:54 -06:00
Sander de Smalen 8fbc925807 Add OffsetIsScalable to getMemOperandWithOffset
Summary:
Making `Scale` a `TypeSize` in AArch64InstrInfo::getMemOpInfo,
has the effect that all places where this information is used
(notably, TargetInstrInfo::getMemOperandWithOffset) will need
to consider Scale - and derived, Offset - possibly being scalable.

This patch adds a new operand `bool &OffsetIsScalable` to
TargetInstrInfo::getMemOperandWithOffset and fixes up all
the places where this function is used, to consider the
offset possibly being scalable.

In most cases, this means bailing out because the algorithm does not
(or cannot) support scalable offsets in places where it does some
form of alias checking for example.

Reviewers: rovka, efriedma, kristof.beyls

Reviewed By: efriedma

Subscribers: wuzish, kerbowa, MatzeB, arsenm, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, javed.absar, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D72758
2020-02-18 15:53:29 +00:00
Simon Moll 5c8ba508b2 [NFC] unsigned->Register in storeRegTo/loadRegFromStack
Summary:
This patch makes progress on the 'unsigned -> Register' rewrite for
`TargetInstrInfo::loadRegFromStack` and `TII::storeRegToStack`.

Reviewers: arsenm, craig.topper, uweigand, jpienaar, atanasyan, venkatra, robertlytton, dylanmckay, t.p.northover, kparzysz, tstellar, k-ishizaka

Reviewed By: arsenm

Subscribers: wuzish, merge_guards_bot, jyknight, sdardis, nemanjai, jvesely, wdng, nhaehnle, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D73870
2020-02-03 14:22:16 +01:00
Cameron McInally 4f2e2acc4b [NFC][AArch64][SVE] Rename Destructive enumerator from DestructiveInstType
Rename Destructive enumerator in preparation for a larger set of patches to
support prefixing destructive oeprations with MOVPRFX.

Differential Revision: https://reviews.llvm.org/D73212
2020-01-29 15:42:26 -06:00
Jay Foad e0f0d0e55c [MachineScheduler] Allow clustering mem ops with complex addresses
The generic BaseMemOpClusterMutation calls into TargetInstrInfo to
analyze the address of each load/store instruction, and again to decide
whether two instructions should be clustered. Previously this had to
represent each address as a single base operand plus a constant byte
offset. This patch extends it to support any number of base operands.

The old target hook getMemOperandWithOffset is now a convenience
function for callers that are only prepared to handle a single base
operand. It calls the new more general target hook
getMemOperandsWithOffset.

The only requirements for the base operands returned by
getMemOperandsWithOffset are:
- they can be sorted by MemOpInfo::Compare, such that clusterable ops
  get sorted next to each other, and
- shouldClusterMemOps knows what they mean.

One simple follow-on is to enable clustering of AMDGPU FLAT instructions
with both vaddr and saddr (base register + offset register). I've left
a FIXME in the code for this case.

Differential Revision: https://reviews.llvm.org/D71655
2020-01-22 14:28:24 +00:00
Amara Emerson 67a8775322 [AArch64] Don't generate gpr CSEL instructions in early-ifcvt if regclasses aren't compatible.
In GlobalISel we may in some unfortunate circumstances generate PHIs with
operands that are on separate banks. If-conversion doesn't currently check for
that case and ends up generating a CSEL on AArch64 with incorrect register
operands.

Differential Revision: https://reviews.llvm.org/D72961
2020-01-21 16:51:31 -08:00
Jay Foad 97ca7c2cc9 [AArch64] Enable clustering memory accesses to fixed stack objects
Summary:
r347747 added support for clustering mem ops with FI base operands
including support for fixed stack objects in shouldClusterFI, but
apparently this was never tested.

This patch fixes shouldClusterFI to work with scaled as well as
unscaled load/store instructions, and fixes the ordering of memory ops
in MemOpInfo::operator< to ensure that memory addresses always
increase, regardless of which direction the stack grows.

Subscribers: MatzeB, kristof.beyls, hiraditya, javed.absar, arphaman, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D71334
2019-12-18 09:46:11 +00:00
David Stenberg 6965f835b4 [DebugInfo] Make describeLoadedValue() reg aware
Summary:
Currently the describeLoadedValue() hook is assumed to describe the
value of the instruction's first explicit define. The hook will not be
called for instructions with more than one explicit define.

This commit adds a register parameter to the describeLoadedValue() hook,
and invokes the hook for all registers in the worklist.

This will allow us to for example describe instructions which produce
more than two parameters' values; e.g. Hexagon's various combine
instructions.

This also fixes situations in our downstream target where we may pass
smaller parameters in the high part of a register. If such a parameter's
value is produced by a larger copy instruction, we can't describe the
call site value using the super-register, and we instead need to know
which sub-register that should be used.

This also allows us to handle cases like this:

  $ebx = [...]
  $rdi = MOVSX64rr32 $ebx
  $esi = MOV32rr $edi
  CALL64pcrel32 @call

The hook will first be invoked for the MOV32rr instruction, which will
say that @call's second parameter (passed in $esi) is described by $edi.
As $edi is not preserved it will be added to the worklist. When we get
to the MOVSX64rr32 instruction, we need to describe two values; the
sign-extended value of $ebx -> $rdi for the first parameter, and $ebx ->
$edi for the second parameter, which is now possible.

This commit modifies the dbgcall-site-lea-interpretation.mir test case.
In the test case, the values of some 32-bit parameters were produced
with LEA64r. Perhaps we can in general cases handle such by emitting
expressions that AND out the lower 32-bits, but I have not been able to
land in a case where a LEA64r is used for a 32-bit parameter instead of
LEA64_32 from C code.

I have not found a case where it would be useful to describe parameters
using implicit defines, so in this patch the hook is still only invoked
for explicit defines of forwarding registers.

Reviewers: djtodoro, NikolaPrica, aprantl, vsk

Reviewed By: djtodoro, vsk

Subscribers: ormris, hiraditya, llvm-commits

Tags: #debug-info, #llvm

Differential Revision: https://reviews.llvm.org/D70431
2019-12-09 10:47:49 +01:00
David Stenberg f3696533f2 Revert "[DebugInfo] Make describeLoadedValue() reg aware"
This reverts commit 3cd93a4efc.
I'll recommit with a well-formatted arcanist commit message.
2019-12-09 10:45:13 +01:00
David Stenberg 3cd93a4efc [DebugInfo] Make describeLoadedValue() reg aware
Currently the describeLoadedValue() hook is assumed to describe the
value of the instruction's first explicit define. The hook will not be
called for instructions with more than one explicit define.

This commit adds a register parameter to the describeLoadedValue() hook,
and invokes the hook for all registers in the worklist.

This will allow us to for example describe instructions which produce
more than two parameters' values; e.g. Hexagon's various combine
instructions.

This also fixes a case in our downstream target where we may pass
smaller parameters in the high part of a register. If such a parameter's
value is produced by a larger copy instruction, we can't describe the
call site value using the super-register, and we instead need to know
which sub-register that should be used.

This also allows us to handle cases like this:

  $ebx = [...]
  $rdi = MOVSX64rr32 $ebx
  $esi = MOV32rr $edi
  CALL64pcrel32 @call

The hook will first be invoked for the MOV32rr instruction, which will
say that @call's second parameter (passed in $esi) is described by $edi.
As $edi is not preserved it will be added to the worklist. When we get
to the MOVSX64rr32 instruction, we need to describe two values; the
sign-extended value of $ebx -> $rdi for the first parameter, and $ebx ->
$edi for the second parameter, which is now possible.

This commit modifies the dbgcall-site-lea-interpretation.mir test case.
In the test case, the values of some 32-bit parameters were produced
with LEA64r. Perhaps we can in general cases handle such by emitting
expressions that AND out the lower 32-bits, but I have not been able to
land in a case where a LEA64r is used for a 32-bit parameter instead of
LEA64_32 from C code.

I have not found a case where it would be useful to describe parameters
using implicit defines, so in this patch the hook is still only invoked
for explicit defines of forwarding registers.
2019-12-09 10:44:17 +01:00
Matt Arsenault e6c9a9af39 Use MCRegister in copyPhysReg 2019-11-11 14:42:33 +05:30
Djordje Todorovic 8d2ccd1ac3 Reland: [TII] Use optional destination and source pair as a return value; NFC
Refactor usage of isCopyInstrImpl, isCopyInstr and isAddImmediate methods
to return optional machine operand pair of destination and source
registers.

Patch by Nikola Prica

Differential Revision: https://reviews.llvm.org/D69622
2019-11-08 13:00:39 +01:00
Simon Pilgrim 3842b94c4e Revert rG57ee0435bd47f23f3939f402914c231b4f65ca5e - [TII] Use optional destination and source pair as a return value; NFC
This is breaking MSVC builds: http://lab.llvm.org:8011/builders/llvm-clang-x86_64-expensive-checks-win/builds/20375
2019-10-31 18:00:29 +00:00
Djordje Todorovic 57ee0435bd [TII] Use optional destination and source pair as a return value; NFC
Refactor usage of isCopyInstrImpl, isCopyInstr and isAddImmediate methods
to return optional machine operand pair of destination and source
registers.

Patch by Nikola Prica

Differential Revision: https://reviews.llvm.org/D69622
2019-10-31 15:34:49 +01:00
Djordje Todorovic 532815dd5c [ARM][AArch64][DebugInfo] Improve call site instruction interpretation
Extend the describeLoadedValue() with support for target specific ARM and
AArch64 instructions interpretation. The patch provides specialization for
ADD and SUB operations that include a register and an immediate/offset
operand. Some of the instructions can operate with global string addresses
or constant pool indexes but such cases are omitted since we currently lack
flexible support for processing such operands at DWARF production stage.

Patch by Nikola Prica

Differential Revision: https://reviews.llvm.org/D67556
2019-10-30 13:58:14 +01:00
Shoaib Meenai 6d1891c508 [AArch64] Fix offset calculation
r374772 changed Offset to be an int64_t but left NewOffset as an int.
Scale is unsigned, so in the calculation `Offset - NewOffset * Scale`,
`NewOffset * Scale` was promoted to unsigned and was then zero-extended
to 64 bits, leading to an incorrect computation which manifested as an
out-of-memory when building the Swift standard library for Android
aarch64. Promote NewOffset to int64_t to fix this, and promote
EmittableOffset as well, since its one user passes it to a function
which takes an int64_t anyway.

Test case based on a suggestion by Sander de Smalen!

Differential Revision: https://reviews.llvm.org/D69018

llvm-svn: 375043
2019-10-16 21:41:05 +00:00
Changpeng Fang f5524f0451 Remove the AliasAnalysis argument in function areMemAccessesTriviallyDisjoint
Reviewers:
  arsenm

Differential Revision:
  https://reviews.llvm.org/D58360

llvm-svn: 373024
2019-09-26 22:53:44 +00:00
Sander de Smalen 612b038966 [AArch64] NFC: Add generic StackOffset to describe scalable offsets.
To support spilling/filling of scalable vectors we need a more generic
representation of a stack offset than simply 'int'.

For this we introduce the StackOffset struct, which comprises multiple
offsets sized by their respective MVTs. Byte-offsets will thus be a simple
tuple such as { offset, MVT::i8 }. Adding two byte-offsets will result in a
byte offset { offsetA + offsetB, MVT::i8 }. When two offsets have different
types, we can canonicalise them to use the same MVT, as long as their
runtime sizes are guaranteed to have the same size-ratio as they would have
at compile-time.

When we have both scalable- and fixed-size objects on the stack, we can 
create an offset that is: 

  ({ offset_fixed, MVT::i8 } + { offset_scalable, MVT::nxv1i8 })

The struct also contains a getForFrameOffset() method that is specific to
AArch64 and decomposes the frame-offset to be used directly in instructions
that operate on the stack or index into the stack.

Note: This patch adds StackOffset as an AArch64-only concept, but we would
like to make this a generic concept/struct that is supported by all 
interfaces that take or return stack offsets (currently as 'int'). Since
that would be a bigger change that is currently pending on D32530 landing,
we thought it makes sense to first show/prove the concept in the AArch64
target before proposing to roll this out further.

Reviewers: thegameg, rovka, t.p.northover, efriedma, greened

Reviewed By: rovka, greened

Differential Revision: https://reviews.llvm.org/D61435

llvm-svn: 368024
2019-08-06 13:06:40 +00:00
Jonas Paulsson fdc4ea34e3 [SystemZ, RegAlloc] Favor 3-address instructions during instruction selection.
This patch aims to reduce spilling and register moves by using the 3-address
versions of instructions per default instead of the 2-address equivalent
ones. It seems that both spilling and register moves are improved noticeably
generally.

Regalloc hints are passed to increase conversions to 2-address instructions
which are done in SystemZShortenInst.cpp (after regalloc).

Since the SystemZ reg/mem instructions are 2-address (dst and lhs regs are
the same), foldMemoryOperandImpl() can no longer trivially fold a spilled
source register since the reg/reg instruction is now 3-address. In order to
remedy this, new 3-address pseudo memory instructions are used to perform the
folding only when the dst and lhs virtual registers are known to be allocated
to the same physreg. In order to not let MachineCopyPropagation run and
change registers on these transformed instructions (making it 3-address), a
new target pass called SystemZPostRewrite.cpp is run just after
VirtRegRewriter, that immediately lowers the pseudo to a target instruction.

If it would have been possibe to insert a COPY instruction and change a
register operand (convert to 2-address) in foldMemoryOperandImpl() while
trusting that the caller (e.g. InlineSpiller) would update/repair the
involved LiveIntervals, the solution involving pseudo instructions would not
have been needed. This is perhaps a potential improvement (see Phabricator
post).

Common code changes:

* A new hook TargetPassConfig::addPostRewrite() is utilized to be able to run a
target pass immediately before MachineCopyPropagation.

* VirtRegMap is passed as an argument to foldMemoryOperand().

Review: Ulrich Weigand, Quentin Colombet
https://reviews.llvm.org/D60888

llvm-svn: 362868
2019-06-08 06:19:15 +00:00
Alexey Lapshin 53726588f6 [DebugInfo][AArch64] Recognise target specific instruction as mov instr
This fix is for the problem from https://bugs.llvm.org/show_bug.cgi?id=38714.
Specifically, Simple Register Coalescing creates following conversion :

 undef %0.sub_32:gpr64 = ORRWrs $wzr, %3:gpr32common, 0, debug-location !24;

It copies 32-bit value from gpr32 into gpr64. But Live DEBUG_VALUE analysis
is not able to create debug location record for that instruction. So the problem
is in that debug info for argc variable is incorrect. The fix is
to write custom isCopyInstrImpl() which would recognize the ORRWrs instr.

llvm-svn: 361417
2019-05-22 18:48:58 +00:00
Mandeep Singh Grang 814435fe87 [AArch64] only indicate CFI on Windows if we emitted CFI
Summary:
Otherwise, we emit directives for CFI without any actual CFI opcodes to
go with them, which causes tools to malfunction.  The technique is
similar to what the x86 backend already does.

Fixes https://bugs.llvm.org/show_bug.cgi?id=40876

Patch by: froydnj (Nathan Froyd)

Reviewers: mstorsjo, eli.friedman, rnk, mgrang, ssijaric

Reviewed By: rnk

Subscribers: javed.absar, kristof.beyls, llvm-commits, dmajor

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D61960

llvm-svn: 360816
2019-05-15 21:23:41 +00:00
Bjorn Pettersson 238c9d6308 [CodeGen] Add "const" to MachineInstr::mayAlias
Summary:
The basic idea here is to make it possible to use
MachineInstr::mayAlias also when the MachineInstr
is const (or the "Other" MachineInstr is const).

The addition of const in MachineInstr::mayAlias
then rippled down to the need for adding const
in several other places, such as
TargetTransformInfo::getMemOperandWithOffset.

Reviewers: hfinkel

Reviewed By: hfinkel

Subscribers: hfinkel, MatzeB, arsenm, jvesely, nhaehnle, hiraditya, javed.absar, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D60856

llvm-svn: 358744
2019-04-19 09:08:38 +00:00
Sander de Smalen 90d1b551e1 [AArch64] NFC: Cleanup isAArch64FrameOffsetLegal
Cleanup isAArch64FrameOffsetLegal by:
- Merging the large switch statement to reuse AArch64InstrInfo::getMemOpInfo().
- Using AArch64InstrInfo::getUnscaledLdSt() to determine whether an instruction
  has an unscaled variant.
- Simplifying the logic that calculates the offset to fit the immediate.

Reviewers: paquette, evandro, eli.friedman, efriedma

Reviewed By: efriedma

Differential Revision: https://reviews.llvm.org/D59636

llvm-svn: 357064
2019-03-27 13:16:19 +00:00
Tim Northover 638110a208 AArch64: implement copy for paired GPR registers.
When doing 128-bit atomics using CASP we might need to copy a GPRPair to a
different register, but that was unimplemented up to now.

llvm-svn: 353383
2019-02-07 10:35:34 +00:00
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00
Evandro Menezes 53f0d41dc4 [AArch64] Refactor the Exynos scheduling predicates
Refactor the scheduling predicates based on `MCInstPredicate`.  In this
case, for the Exynos processors.

Differential revision: https://reviews.llvm.org/D55345

llvm-svn: 348774
2018-12-10 17:17:26 +00:00
Francis Visoiu Mistrih d7eebd6d83 [CodeGen][NFC] Make `TII::getMemOpBaseImmOfs` return a base operand
Currently, instructions doing memory accesses through a base operand that is
not a register can not be analyzed using `TII::getMemOpBaseRegImmOfs`.

This means that functions such as `TII::shouldClusterMemOps` will bail
out on instructions using an FI as a base instead of a register.

The goal of this patch is to refactor all this to return a base
operand instead of a base register.

Then in a separate patch, I will add FI support to the mem op clustering
in the MachineScheduler.

Differential Revision: https://reviews.llvm.org/D54846

llvm-svn: 347746
2018-11-28 12:00:20 +00:00
Evandro Menezes 9ef79c884a [TableGen] Refactor macro names (NFC)
Make the names for the macros for `TargetInstrInfo` uniform.

llvm-svn: 347706
2018-11-27 20:58:27 +00:00
Evandro Menezes 6a38a5effe [AArch64] Refactor the scheduling predicates (3/3) (NFC)
Refactor the scheduling predicates based on `MCInstPredicate`.  In this
case, `AArch64InstrInfo::hasExtendedReg()`.

Differential revision: https://reviews.llvm.org/D54822

llvm-svn: 347599
2018-11-26 21:47:46 +00:00
Evandro Menezes 56368c6fa5 [AArch64] Refactor the scheduling predicates (2/3) (NFC)
Refactor the scheduling predicates based on `MCInstPredicate`.  In this
case, `AArch64InstrInfo::hasShiftedReg()`.

Differential revision: https://reviews.llvm.org/D54820

llvm-svn: 347598
2018-11-26 21:47:41 +00:00
Evandro Menezes b02ac8bd21 [AArch64] Refactor the scheduling predicates (1/3) (NFC)
Refactor the scheduling predicates based on `MCInstPredicate`.  In this
case, `AArch64InstrInfo::isScaledAddr()`

Differential revision: https://reviews.llvm.org/D54777

llvm-svn: 347597
2018-11-26 21:47:28 +00:00
Jessica Paquette 82d9c0a3fa [MachineOutliner][NFC] Change getMachineOutlinerMBBFlags to isMBBSafeToOutlineFrom
Instead of returning Flags, return true if the MBB is safe to outline from.

This lets us check for unsafe situations, like say, in AArch64, X17 is live
across a MBB without being defined in that MBB. In that case, there's no point
in performing an instruction mapping.

llvm-svn: 346718
2018-11-12 23:51:32 +00:00
Evandro Menezes f1a0d93b1d [PATCH] [AArch64] Refactor helper functions (NFC)
Refactor helper functions in AArch64InstrInfo to be static methods.

llvm-svn: 346273
2018-11-06 22:17:14 +00:00
Sanjin Sijaric fadebc8aae [ARM64] [Windows] Exception handling support in frame lowering
Emit pseudo instructions indicating unwind codes corresponding to each
instruction inside the prologue/epilogue.  These are used by the MCLayer to
populate the .xdata section.

Differential Revision: https://reviews.llvm.org/D50288

llvm-svn: 345701
2018-10-31 09:27:01 +00:00
Eli Friedman 93d0129b78 [AArch64] [Windows] SEH opcodes should be scheduling boundaries.
Prevents the post-RA scheduler from modifying the prologue sequences
emitting by frame lowering. This is roughly similar to what we do for
other targets: TargetInstrInfo::isSchedulingBoundary checks
isPosition(), which checks for CFI_INSTRUCTION.

isSEHInstruction is taken from D50288; it'll land with whatever patch
lands first.

Differential Revision: https://reviews.llvm.org/D53851

llvm-svn: 345634
2018-10-30 19:24:51 +00:00
Evandro Menezes 096e2497b5 [AArch64] Refactor Exynos machine model
Effectively, NFC.

llvm-svn: 345201
2018-10-24 21:40:43 +00:00
Evandro Menezes 769d4cebad [AArch64] Refactor Exynos machine model (NFC)
llvm-svn: 345187
2018-10-24 20:03:24 +00:00
Jessica Paquette fa3bee4756 [MachineOutliner][AArch64] Add support for saving LR to a register
This teaches the outliner to save LR to a register rather than the stack when
possible. This allows us to avoid bumping the stack in outlined functions in
some cases. By doing this, in a later patch, we can teach the outliner to do
something like this:

f1:
  ...
  bl OUTLINED_FUNCTION
  ...

f2:
  ...
  move LR's contents to a register
  bl OUTLINED_FUNCTION
  move the register's contents back

instead of falling back to saving LR in both cases.

llvm-svn: 338278
2018-07-30 17:45:28 +00:00
Sander de Smalen 9b33309c87 [AArch64][SVE] Asm: Add MOVPRFX instructions.
This patch adds predicated and unpredicated MOVPRFX instructions, which
can be prepended to SVE instructions that are destructive on their first
source operand, to make them a constructive operation, e.g.

  add z1.s, p0/m, z1.s, z2.s        <=> z1 = z1 + z2

can be made constructive:

  movprfx z0, z1
  add z0.s, p0/m, z0.s, z2.s        <=> z0 = z1 + z2

The predicated MOVPRFX instruction can additionally be used to zero
inactive elements, e.g.

  movprfx z0.s, p0/z, z1.s
  add z0.s, p0/m, z0.s, z2.s

Not all instructions can be prefixed with the MOVPRFX instruction
which is why this patch also adds a mechanism to validate prefixed
instructions. The exact rules when a MOVPRFX applies is detailed in
the SVE supplement of the Architectural Reference Manual.

This is patch [1/2] in a series to add MOVPRFX instructions:
- Patch [1/2]: https://reviews.llvm.org/D49592
- Patch [2/2]: https://reviews.llvm.org/D49593

Reviewers: rengolin, SjoerdMeijer, samparker, fhahn, javed.absar

Reviewed By: SjoerdMeijer

Differential Revision: https://reviews.llvm.org/D49592

llvm-svn: 338258
2018-07-30 15:42:46 +00:00
Jessica Paquette f90edbe3d6 Recommit "Enable MachineOutliner by default under -Oz for AArch64"
Fixed the ASAN failure from before in r338148, so recommiting.

This patch enables the MachineOutliner by default in AArch64 under -Oz.

The MachineOutliner offers around a 4.5% improvement on the current -Oz code
size improvements.

We have done work into improving the debuggability of outlined code, so that
users of -Oz won't be surprised by the optimization. We have also been executing
the LLVM test suite and common external tests such as the SPEC suites
continuously with no issue. The outliner has a low compile-time overhead of
roughly 1%. At this point, the outliner would be a really good addition to the
-Oz pass pipeline!

llvm-svn: 338160
2018-07-27 20:18:27 +00:00
Jessica Paquette faea2d3130 Revert "Enable MachineOutliner by default under -Oz for AArch64"
It failed an Asan test on a bot:

http://lab.llvm.org:8011/builders/sanitizer-x86_64-linux-fast/builds/21543/steps/check-llvm%20asan/logs/stdio

Fixing that before recommitting.

llvm-svn: 338136
2018-07-27 17:25:38 +00:00
Jessica Paquette d4229b985c Enable MachineOutliner by default under -Oz for AArch64
This patch enables the MachineOutliner by default in AArch64 under -Oz.

The MachineOutliner offers around a 4.5% improvement on the current -Oz code
size improvements.

We have done work into improving the debuggability of outlined code, so that
users of -Oz won't be surprised by the optimization. We have also been executing
the LLVM test suite and common external tests such as the SPEC suites
continuously with no issue. The outliner has a low compile-time overhead of
roughly 1%. At this point, the outliner would be a really good addition to the
-Oz pass pipeline!

llvm-svn: 338133
2018-07-27 16:44:42 +00:00
Jessica Paquette 69f517df27 [MachineOutliner][NFC] Move target frame info into OutlinedFunction
Just some gardening here.

Similar to how we moved call information into Candidates, this moves outlined
frame information into OutlinedFunction. This allows us to remove
TargetCostInfo entirely.

Anywhere where we returned a TargetCostInfo struct, we now return an
OutlinedFunction. This establishes OutlinedFunctions as more of a general
repeated sequence, and Candidates as occurrences of those repeated sequences.

llvm-svn: 337848
2018-07-24 20:13:10 +00:00
Jessica Paquette fca55129b1 [MachineOutliner][NFC] Make Candidates own their call information
Before this, TCI contained all the call information for each Candidate.

This moves that information onto the Candidates. As a result, each Candidate
can now supply how it ought to be called. Thus, Candidates will be able to,
say, call the same function in cheaper ways when possible. This also removes
that information from TCI, since it's no longer used there.

A follow-up patch for the AArch64 outliner will demonstrate this.

llvm-svn: 337840
2018-07-24 17:42:11 +00:00