Previously we'd defer this determination until writing the AST, which doesn't
allow us to use this information when building other submodules of the same
module. This change also allows us to use a uniform mechanism for writing
module macro records, independent of whether they are local or imported.
llvm-svn: 235614
This graph will be used to determine the current set of active macros. This is
foundation work for getting macro visibility correct across submodules of the
current module. No functionality change for now.
llvm-svn: 235461
This is substantially simpler, provides better space usage accounting in bcanalyzer,
and gives a more compact representation. No functionality change intended.
llvm-svn: 235420
Emits the following code for the clause at the beginning of the outlined function for implicit threads:
if (<not a master thread>) {
...
<thread local copy of var> = <master thread local copy of var>;
...
}
<sync point>;
Checking for a non-master thread is performed by comparing of the address of the thread local variable with the address of the master's variable. Master thread always uses original variables, so you always know the address of the variable in the master thread.
Differential Revision: http://reviews.llvm.org/D9026
llvm-svn: 235075
#pragma omp for lastprivate(<var>)
for (i = a; i < b; ++b)
<BODY>;
This construct is translated into something like:
<last_iter> = alloca i32
<lastprivate_var> = alloca <type>
<last_iter> = 0
; No initializer for simple variables or a default constructor is called for objects.
; For arrays perform element by element initialization by the call of the default constructor.
...
OMP_FOR_START(...,<last_iter>, ..); sets <last_iter> to 1 if this is the last iteration.
<BODY>
...
OMP_FOR_END
if (<last_iter> != 0) {
<var> = <lastprivate_var> ; Update original variable with the lastprivate value.
}
call __kmpc_cancel_barrier() ; an implicit barrier to avoid possible data race.
Differential Revision: http://reviews.llvm.org/D8658
llvm-svn: 235074
More fallout from r228234; when looking up an identifier in a PCH that
imports the Cocoa module on Darwin, it was taking 2 to 5 seconds
because we were hammering the MapVector::erase() function, which is
O(n). For now, just clear() the contained SmallVector to get back to
0.25 - 0.5 seconds. This is probably not the long-term fix, because
without modules or without PCH the performance is more like 0.02
seconds.
llvm-svn: 234655
Added sema checks for forms of expressions/statements allowed under control of 'atomic capture' directive + generation of helper objects for future codegen.
llvm-svn: 233785
Adds atomic update codegen for the following forms of expressions:
x binop= expr;
x++;
++x;
x--;
--x;
x = x binop expr;
x = expr binop x;
If x and expr are integer and binop is associative or x is a LHS in a RHS of the assignment expression, and atomics are allowed for type of x on the target platform atomicrmw instruction is emitted.
Otherwise compare-and-swap sequence is emitted:
bb:
...
atomic load <x>
cont:
<expected> = phi [ <x>, label %bb ], [ <new_failed>, %cont ]
<desired> = <expected> binop <expr>
<res> = cmpxchg atomic &<x>, desired, expected
<new_failed> = <res>.field1;
br <res>field2, label %exit, label %cont
exit:
...
Differential Revision: http://reviews.llvm.org/D8536
llvm-svn: 233513
I again added the "reasonable" assertions and they again fired during
a modules self-host.
This hopefully will un-break the self-host build bot. No test case handy
and adding one seems to have little or no value really.
llvm-svn: 233426
if the merged definition is visible, and perform lookups into all merged copies
of the definition (not just for special members) so that we can complete the
redecl chains for members of the class.
llvm-svn: 233420
declaration name so that we mark declarations for emission in
a deterministic order (and in turn give them deterministic IDs).
This is the last for loop or data structure I can find by inspection of
the AST writer which doesn't use a deterministic order.
Found by inspection, no test case.
llvm-svn: 233348
order based on order of insertion.
This should cause both our warnings about these and the modules
serialization to be deterministic as a consequence.
Found by inspection.
llvm-svn: 233343
DeclIDs so that in addition to be grouped by file, the order of these
groups is stable.
Found by inspection, no test case. Not sure this can be observed without
a randomized seed for the hash table, but we shouldn't be relying on the
hash table layout under any circumstances.
llvm-svn: 233339
traversing the identifier table.
No easy test case as this table is somewhere between hard and impossible
to observe as non-deterministically ordered. The table is a hash table
but we hash the string contents and never remove entries from the table
so the growth pattern, etc, is all completely fixed. However, relying on
the hash function being deterministic is specifically against the
long-term direction of LLVM's hashing datastructures, which are intended
to provide *no* ordering guarantees. As such, this defends against these
things by sorting the identifiers. Sorting identifiers right before we
emit them to a serialized form seems a low cost for predictability here.
llvm-svn: 233332
logic removed.
This logic was both inserting all builtins into the identifier table and
ensuring they would get serialized. The first happens unconditionally
now, and we always write out the entire identifier table. This code can
simply go away.
llvm-svn: 233331
constructors in the current lexical context even though name lookup
found them via some other context merged into the redecl chain.
This can only happen for implicit constructors which can only have the
name of the type of the current context, so we can fix this by simply
*always* merging those names first. This also has the advantage of
removing the walk of the current lexical context from the common case
when this is the only constructor name we need to deal with (implicit or
otherwise).
I've enhanced the tests to cover this case (and uncovered an unrelated
bug which I fixed in r233325).
llvm-svn: 233327
deserializing an inherited constructor.
This is the exact same logic we use when deserializing method overrides
for the same reason: the canonical decl may end up pinned to a different
decl when we are improting modules, we need to re-pin to the canonical
one during reading.
My test case for this will come in a subsequent commit. I was trying to
test a more tricky bug fix and the test case happened to tickle this bug
as well.
llvm-svn: 233325
Clang was inserting these into a dense map. While it never iterated the
dense map during normal compilation, it did when emitting a module. Fix
this by using a standard MapVector to preserve the order in which we
encounter the late parsed templates.
I suspect this still isn't ideal, as we don't seem to remove things from
this map even when we mark the templates as no longer late parsed. But
I don't know enough about this particular extension to craft a nice,
subtle test case covering this. I've managed to get the stress test to
at least do some late parsing and demonstrate the core problem here.
This patch fixes the test and provides deterministic behavior which is
a strict improvement over the prior state.
I've cleaned up some of the code here as well to be explicit about
inserting when that is what is actually going on.
llvm-svn: 233264
deterministically.
This fixes a latent issue where even Clang's Sema (and diagnostics) were
non-deterministic in the face of this pragma. The fix is super simple --
just use a MapVector so we track the order in which these are parsed (or
imported). Especially considering how rare they are, this seems like the
perfect tradeoff. I've also simplified the client code with judicious
use of auto and range based for loops.
I've added some pretty hilarious code to my stress test which now
survives the binary diff without issue.
llvm-svn: 233261
updated decl contexts get emitted.
Since this code was added, we have newer vastly simpler code for
handling this. The code I'm removing was very expensive and also
generated unstable order of declarations which made module outputs
non-deterministic.
All of the tests continue to pass for me and I'm able to check the
difference between the .pcm files after merging modules together.
llvm-svn: 233251
non-visible definition, skip the new definition and make the old one visible
instead of trying to parse it again and failing horribly. C++'s ODR allows
us to assume that the two definitions are identical.
llvm-svn: 233250
decl context lookup tables.
The first attepmt at this caused problems. We had significantly more
sources of non-determinism that I realized at first, and my change
essentially turned them from non-deterministic output into
use-after-free. Except that they weren't necessarily caught by tools
because the data wasn't really freed.
The new approach is much simpler. The first big simplification is to
inline the "visit" code and handle this directly. That works much
better, and I'll try to go and clean up the other caller of the visit
logic similarly.
The second key to the entire approach is that we need to *only* collect
names into a stable order at first. We then need to issue all of the
actual 'lookup()' calls in the stable order of the names so that we load
external results in a stable order. Once we have loaded all the results,
the table of results will stop being invalidated and we can walk all of
the names again and use the cheap 'noload_lookup()' method to quickly
get the results and serialize them.
To handle constructors and conversion functions (whose names can't be
stably ordered) in this approach, what we do is record only the visible
constructor and conversion function names at first. Then, if we have
any, we walk the decls of the class and add those names in the order
they occur in the AST. The rest falls out naturally.
This actually ends up simpler than the previous approach and seems much
more robust.
It uncovered a latent issue where we were building on-disk hash tables
for lookup results when the context was a linkage spec! This happened to
dodge all of the assert by some miracle. Instead, add a proper predicate
to the DeclContext class and use that which tests both for function
contexts and linkage specs.
It also uncovered PR23030 where we are forming somewhat bizarre negative
lookup results. I've just worked around this with a FIXME in place
because fixing this particular Clang bug seems quite hard.
I've flipped the first part of the test case I added for stability back
on in this commit. I'm taking it gradually to try and make sure the
build bots are happy this time.
llvm-svn: 233249
More than 2x speedup on modules builds with large redecl chains.
Roughly 15-20% speedup on non-modules builds for very large TUs.
Between 2-3% cost in memory on large TUs.
llvm-svn: 233228
lookup tables, we need to establish a stable ordering for constructing
the hash table. This is trickier than it might seem.
Most of these cases are easily handled by sorting the lookup results
associated with a specific name that has an identifier. However for
constructors and conversion functions, the story is more complicated.
Here we need to merge all of the constructors or conversion functions
together and this merge needs to be stable. We don't have any stable
ordering for either constructors or conversion functions as both would
require a stable ordering across types.
Instead, when we have constructors or conversion functions in the
results, we reconstruct a stable order by walking the decl context in
lexical order and merging them in the order their particular declaration
names are encountered. This doesn't generalize as there might be found
declaration names which don't actually occur within the lexical context,
but for constructors and conversion functions it is safe. It does
require loading the entire decl context if necessary to establish the
ordering but there doesn't seem to be a meaningful way around that.
Many thanks to Richard for talking through all of the design choices
here. While I wrote the code, he guided all the actual decisions about
how to establish the order of things.
No test case yet because the test case I have doesn't pass yet -- there
are still more sources of non-determinism. However, this is complex
enough that I wanted it to go into its own commit in case it causes some
unforseen issue or needs to be reverted.
llvm-svn: 233156
There are two aspects of non-determinism fixed here, which was the
minimum required to cause at least an empty module to be deterministic.
First, the random number signature is only inserted into the module when
we are building modules implicitly. The use case for these random
signatures is to work around the very fact that modules are not
deterministic in their output when working with the implicitly built and
populated module cache. Eventually this should go away entirely when
we're confident that Clang is producing deterministic output.
Second, the on-disk hash table is populated based on the order of
iteration over a DenseMap. Instead, use a MapVector so that we can walk
it in insertion order.
I've added a test that an empty module, when built twice, produces the
same binary PCM file.
llvm-svn: 233115
Previously we'd deserialize the list of mem-initializers for a constructor when
we deserialized the declaration of the constructor. That could trigger a
significant amount of unnecessary work (pulling in all base classes
recursively, for a start) and was causing problems for the modules buildbot due
to cyclic deserializations. We now deserialize these on demand.
This creates a certain amount of duplication with the handling of
CXXBaseSpecifiers; I'll look into reducing that next.
llvm-svn: 233052
* Strength reduce a std::function to a function pointer,
* Factor out checking the AST file magic number,
* Add a brief doc comment to readAStFileSignature
Thanks to Chandler for spotting these oddities.
llvm-svn: 233050
If there is at least one 'copyprivate' clause is associated with the single directive, the following code is generated:
```
i32 did_it = 0; \\ for 'copyprivate' clause
if(__kmpc_single(ident_t *, gtid)) {
SingleOpGen();
__kmpc_end_single(ident_t *, gtid);
did_it = 1; \\ for 'copyprivate' clause
}
<copyprivate_list>[0] = &var0;
...
<copyprivate_list>[n] = &varn;
call __kmpc_copyprivate(ident_t *, gtid, <copyprivate_list_size>,
<copyprivate_list>, <copy_func>, did_it);
...
void<copy_func>(void *LHSArg, void *RHSArg) {
Dst = (void * [n])(LHSArg);
Src = (void * [n])(RHSArg);
Dst[0] = Src[0];
... Dst[n] = Src[n];
}
```
All list items from all 'copyprivate' clauses are gathered into single <copyprivate list> (<copyprivate_list_size> is a size in bytes of this list) and <copy_func> is used to propagate values of private or threadprivate variables from the 'single' region to other implicit threads from outer 'parallel' region.
Differential Revision: http://reviews.llvm.org/D8410
llvm-svn: 232932
for a DeclContext, and fix propagation of exception specifications along
redeclaration chains.
This reverts r232905, r232907, and r232907, which reverted r232793, r232853,
and r232853.
One additional change is present here to resolve issues with LLDB: distinguish
between whether lexical decls missing from the lookup table are local or are
provided by the external AST source, and still look in the external source if
that's where they came from.
llvm-svn: 232928
The linear variable is privatized (similar to 'private') and its
value on current iteration is calculated, similar to the loop
counter variables.
Differential revision: http://reviews.llvm.org/D8375
llvm-svn: 232890
give an exception specification to a declaration that didn't have an exception
specification in any of our imported modules, emit an update record ourselves.
Without this, code importing the current module would not see an exception
specification that we could see and might have relied on.
llvm-svn: 232870
When we need to build the lookup table for a DeclContext, we used to pull in
all lexical declarations for the context; instead, just build a lookup table
for the local lexical declarations. We previously didn't guarantee that the
imported declarations would be in the returned map, but in some cases we'd
happen to put them all in there regardless. Now we're even lazier about this.
This unnecessary work was papering over some other bugs:
- LookupVisibleDecls would use the DC for name lookups in the TU in C, and
this was not guaranteed to find all imported names (generally, the DC for
the TU in C is not a reliable place to perform lookups). We now use an
identifier-based lookup mechanism for this.
- We didn't actually load in the list of eagerly-deserialized declarations
when importing a module (so external definitions in a module wouldn't be
emitted by users of those modules unless they happened to be deserialized
by the user of the module).
llvm-svn: 232793
Now that SmallString is a first-class citizen, most SmallString::str()
calls are not required. This patch removes a whole bunch of them, yet
there are lots more.
There are two use cases where str() is really needed:
1) To use one of StringRef member functions which is not available in
SmallString.
2) To convert to std::string, as StringRef implicitly converts while
SmallString do not. We may wish to change this, but it may introduce
ambiguity.
llvm-svn: 232622
consumers of that module.
Previously, such a file would only be available if the module happened to
actually import something from that module.
llvm-svn: 232583
namespace to not merge properly.
We have an invariant here: after a declaration reads its canonical declaration,
it can assume the canonical declaration is fully merged. This invariant can be
violated if deserializing some declaration triggers the deserialization of a
later declaration, because that later declaration can in turn deserialize a
redeclaration of that first declaration before it is fully merged.
The anonymous namespace for a namespace gets stored with the first declaration
of that namespace, which may be before its parent namespace, so defer loading
it until after we've finished merging the surrounding namespace.
llvm-svn: 232455
building its redecl chains, make sure we pull in the redeclarations of those
canonical declarations.
It's pretty difficult to reach a situation where we can find more canonical
declarations of an entity while building its redecl chains; I think the
provided testcase (4 modules and 7 declarations) cannot be reduced further.
llvm-svn: 232411
with a subset of the existing target CPU features or mismatched CPU
names.
While we can't check that the CPU name used to build the module will end
up being able to codegen correctly for the translation unit, we actually
check that the imported features are a subset of the existing features.
While here, rewrite the code to use std::set_difference and have it
diagnose all of the differences found.
Test case added which walks the set relationships and ensures we
diagnose all the right cases and accept the others.
No functional change for implicit modules here, just better diagnostics.
llvm-svn: 232248
headers even if they arrived when merging non-system modules.
The idea of this code is that we don't want to warn the user about
macros defined multiple times by their system headers with slightly
different definitions. We should have this behavior if either the
macro comes from a system module, or the definition within the module
comes from a system header. Previously, we would warn on ambiguous
macros being merged when they came from a users modules even though they
only showed up via system headers.
By surviving this we can handle common system header macro differences
like differing 'const' qualification of pointers due to some headers
predating 'const' being valid in C code, even when those systems headers
are pre-built into a system module.
Differential Revision: http://reviews.llvm.org/D8310
llvm-svn: 232149
definition, be sure to update the definition data on all declarations, not just
the canonical one, since the pattern might not be in the list of pending
definitions (if it used to be canonical itself).
One-line fix by me; reduced testcase by Daniel Jasper!
llvm-svn: 231950
specification, update all prior declarations if the new one has an explicit
exception specification and the prior ones don't.
Patch by Vassil Vassilev! Some minor tweaking and test case by me.
llvm-svn: 231738
move the operator delete updating into a separate update record so we can cope
with updating another module's destructor's operator delete.
llvm-svn: 231735
of extern "C" declarations. This is simpler and vastly more efficient for
modules builds (we no longer need to load *all* extern "C" declarations to
determine if we have a redeclaration).
No functionality change intended.
llvm-svn: 231538
We used to save out and eagerly load a (potentially huge) table of merged
formerly-canonical declarations when we loaded each module. This was extremely
inefficient in the presence of large amounts of merging, and didn't actually
save any merging lookup work, because we still needed to perform name lookup to
check that our merged declaration lists were complete. This also resulted in a
loss of laziness -- even if we only needed an early declaration of an entity, we
would eagerly pull in all declarations that had been merged into it regardless.
We now store the relevant fragments of the table within the declarations
themselves. In detail:
* The first declaration of each entity within a module stores a list of first
declarations from imported modules that are merged into it.
* Loading that declaration pre-loads those other entities, so that they appear
earlier within the redeclaration chain.
* The name lookup tables list the most recent local lookup result, if there
is one, or all directly-imported lookup results if not.
llvm-svn: 231424
dynamic classes in the translation unit and check whether each one's key
function is defined when we got to the end of the TU (and when we got to the
end of each module). This is really terrible for modules performance, since it
causes unnecessary deserialization of every dynamic class in every compilation.
We now use a much simpler (and, in a modules build, vastly more efficient)
system: when we see an out-of-line definition of a virtual function, we check
whether that function was in fact its class's key function. (If so, we need to
emit the vtable.)
llvm-svn: 230830
undeserialized specializations (because we merged an imported declaration of
the same template since we last added one), don't bother reading in the
specializations themselves just so we can write out their IDs again.
llvm-svn: 230805
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
This reapplies r230044 with a fixed configure+make build and updated
dependencies and testcase requirements. Over the last iteration this
version adds
- missing target requirements for testcases that specify an x86 triple,
- a missing clangCodeGen.a dependency to libClang.a in the make build.
rdar://problem/19104245
llvm-svn: 230423
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
This reapplies r230044 with a fixed configure+make build and updated
dependencies. Take 3.
llvm-svn: 230305
invalidate lookup_iterators and lookup_results for some name within a
DeclContext if the lookup results for a *different* name change.
llvm-svn: 230121
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
This reapplies r230044 with a fixed configure+make build and updated
dependencies. Take 2.
llvm-svn: 230089
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
This reapplies r230044 with a fixed configure+make build and updated
dependencies.
llvm-svn: 230067
There are two issues here:
1) It's too late to rebuild at this point, because we won't go through
removeModules and when we try to reload the new .pcm we'll get the old
one instead. We might be able to call removeModules after an OutOfDate
here, but I'm not yet confident that it is always safe to do so.
2) In practice, this check fails spuriously when the umbrella header
appears to change because of a VFS change that means it maps to a
different copy of the same file. Because of this, we just skip the
check for now.
llvm-svn: 230064
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
llvm-svn: 230044
the one in the current compiler invocation. If they differ reject the PCH.
This protects against the badness occurring from getting modules loaded from different module caches (see crashes).
rdar://19889860
llvm-svn: 229909
The member gets invalidated as elements are added to the dense set. Directly
access the underlying pointer instead. Not sure how to create a test case for
this :-(. Maybe Richard can help.
llvm-svn: 229673
entity, put the originally-canonical decl IDs in the right places in the redecl
chain rather than reordering them all to the start. If we don't ensure that the
redecl chain order is consistent with the topological module order, we can fail
to make a declaration visible if later declarations are in more IDNSs than
earlier ones (for instance, because the earlier decls are invisible friends).
llvm-svn: 228978
When mangling the module map path into a .pcm file name, also mangle the
IsSystem bit, which can also depend on the header search paths. For
example, the user may change from -I to -isystem. This can affect
diagnostics in the importing TU.
llvm-svn: 228966
context as anonymous for merging purposes. They can't be found by their names,
so we merge them based on their position within the surrounding context.
llvm-svn: 228485
of that entity, ensure that the redeclaration chain is reordered properly on
reload. Otherwise, the result of name lookup for that entity may point to an
entity that is too old; if that's an injected friend name or the like, that
can result in the name not being found at all.
llvm-svn: 228371
object. In such a case, use the TU's DC for merging global decls rather than
giving up when we find there is no TU scope.
Ultimately, we should probably avoid all loading of decls when preprocessing,
but there are other reasonable use cases for loading an AST file with no Sema
object for which this is the right thing.
llvm-svn: 228234
encountered any definition for the class; this happens when the definition is
added by an update record that is not yet loaded. In such a case, eagerly pick
the original parent of the member as the canonical definition of the class
rather than muddling through with the canonical declaration (the latter can
lead to us failing to merge properly later if the canonical definition turns
out to be some other declaration).
llvm-svn: 226977
record, and that class declaration is not the canonical definition of the
class, be sure to add the class to the list of classes that are consulted when
we look up a special member in the canonical definition.
llvm-svn: 226778
on top of a local declaration of the same entity, we still need to remember
that we loaded the first one or we may fail to merge the second one properly.
llvm-svn: 226765
load the definition data from the declaration itself. In that case, merge
properly; don't assume the prior definition is the same as our own.
llvm-svn: 226761
This just tweaks the fix from r224892 (which handled PCHs) to work with
modules, where we will serialize each method individually and hence the
hasMoreThanOneDecl bit needs to be updated as we add the methods.
llvm-svn: 225659
This fixes PR21587, what r221933 fixed for regular programs is now also
fixed for decls coming from PCH files.
Use another bit from the count/bits uint16_t for storing the "more than one
decl" bit. This reduces the number of bits for the count from 14 to 13.
The selector with the most overloads in Cocoa.h has ~55 overloads, so 13 bits
should still be plenty. Since this changes the meaning of a serialized bit
pattern, also increase clang::serialization::VERSION_MAJOR.
Storing the "more than one decl" state of only the first overload isn't quite
correct, but Sema::AreMultipleMethodsInGlobalPool() currently only looks at
the state of the first overload so it's good enough for now.
llvm-svn: 224892
Remove ObjCMethodList::Count, instead store a "has more than one decl" bit in
the low bit of the ObjCMethodDecl pointer, using a PointerIntPair.
Most of this patch is replacing ".Method" with ".getMethod()".
No intended behavior change.
llvm-svn: 224876
Bitfield RefersToEnclosingLocal of Stmt::DeclRefExprBitfields renamed to RefersToCapturedVariable to reflect latest changes introduced in commit 224323. Also renamed method Expr::refersToEnclosingLocal() to Expr::refersToCapturedVariable() and comments for constant arguments.
No functional changes.
llvm-svn: 224329
the simplest case, which is used when no chunk_size is specified in
the schedule(static) or no 'schedule' clause is specified - the
iteration space is divided by the library into chunks that are
approximately equal in size, and at most one chunk is distributed
to each thread. In this case, we do not need an outer loop in each
thread - each thread requests once which iterations range it should
handle (using __kmpc_for_static_init runtime call) and then runs the
inner loop on this range.
Differential Revision: http://reviews.llvm.org/D5865
llvm-svn: 224233
components. These sometimes get synthetically added, and we don't want -Ifoo
and -I./foo to be treated fundamentally differently here.
llvm-svn: 224055
module, use the path from the module map file in preference to the path from
the .pcm file when resolving relative paths in the .pcm file. This allows
diagnostics (and .d output) to give relative paths if the module was found via
a relative path.
llvm-svn: 223577
the root of the module and use paths relative to that directory wherever
possible. This is a step towards allowing explicit modules to be relocated
without being rebuilt, which is important for some kinds of distributed builds,
for good paths in diagnostics, and for appropriate .d output.
This is a recommit of r223443, reverted in r223465; when joining together
imported file paths, we now use the system's separator rather than always
using '/'. This avoids path mismatches between the original module build and
the module user on Windows (at least, in some cases). A more comprehensive
fix will follow.
llvm-svn: 223539
the root of the module and use paths relative to that directory wherever
possible. This is a step towards allowing explicit modules to be relocated
without being rebuilt, which is important for some kinds of distributed builds,
for good paths in diagnostics, and for appropriate .d output.
llvm-svn: 223443
rather than trying to extract this information from the FileEntry after the
fact.
This has a number of beneficial effects. For instance, diagnostic messages for
failed module builds give a path relative to the "module root" rather than an
absolute file path, and the contents of the module includes file is no longer
dependent on what files the including TU happened to inspect prior to
triggering the module build.
llvm-svn: 223095
to be newer than we were expecting. That happens if .pcm's get moved between
file systems during a distributed build. (It's still not OK for them to actually
be different, though, so we still check the size and signature matches.)
llvm-svn: 222507
special member function.
No test yet: the only testcases we have for this issue are extremely complex.
Testcase will be added once I get a reasonable reduction.
llvm-svn: 222506
According to OpenMP standard, Section 2.12.6, atomic Construct, '#pragma omp atomic read' is allowed to be used only for expression statements of form 'v = x;', where x and v (as applicable) are both l-value expressions with scalar type. Patch adds checks for it.
llvm-svn: 222231
For all threadprivate variables which have constructor/destructor emit call to void __kmpc_threadprivate_register(ident_t * <Current Location>, void *<Original Global Addr>, kmpc_ctor <Constructor>, kmpc_cctor NULL, kmpc_dtor <Destructor>);
In expressions all references to such variables are replaced by calls to void *__kmpc_threadprivate_cached(ident_t *<Current Location>, kmp_int32 <Current Thread Id>, void *<Original Global Addr>, size_t <Size of Data>, void ***<Pointer to autogenerated cache – array of private copies of threadprivate variable>);
Test test/OpenMP/threadprivate_codegen.cpp checks that codegen is correct. Also it checks that codegen is correct after serialization/deserialization and one of passes verifies debug info.
Differential Revision: http://reviews.llvm.org/D4002
llvm-svn: 221663
is enabled. Unlike system headers, we want to be more careful about
modifications to user headers, because it's still easy to edit a header
while you're building.
llvm-svn: 221634
This is a new form of expression of the form:
(expr op ... op expr)
where one of the exprs is a parameter pack. It expands into
(expr1 op (expr2onwards op ... op expr))
(and likewise if the pack is on the right). The non-pack operand can be
omitted; in that case, an empty pack gives a fallback value or an error,
depending on the operator.
llvm-svn: 221573
We may need to verify the signature on subsequent imports as well, just
like we verify the size/modtime:
@import A;
@import B; // imports A
@import C; // imports A
llvm-svn: 221569
Use the bitmask to store the set of enabled sanitizers instead of a
bitfield. On the negative side, it makes syntax for querying the
set of enabled sanitizers a bit more clunky. On the positive side, we
will be able to use SanitizerKind to eventually implement the
new semantics for -fsanitize-recover= flag, that would allow us
to make some sanitizers recoverable, and some non-recoverable.
No functionality change.
llvm-svn: 221558
An updated implemnentation of VLA types capturing based on previously committed solution for Lambdas.
This version captures the whole VLA type instead of particular variables which are part of VLA size expression and allows to use previusly calculated size of VLA type in captured regions. Required for OpenMP.
Differential Revision: http://reviews.llvm.org/D5099
llvm-svn: 220850
explicitly using the resulting .pcm file. Unlike for an implicit module build,
we don't need nor want to require these flags to match between the module
and its users.
llvm-svn: 220780
Since the order of the IDs in the AST file (e.g. DeclIDs, SelectorIDs)
is not stable, it is not safe to load an AST file that depends on
another AST file that has been rebuilt since the importer was built,
even if "nothing changed". We previously used size and modtime to check
this, but I've seen cases where a module rebuilt quickly enough to foil
this check and caused very hard to debug build errors.
To save cycles when we're loading the AST, we just generate a random
nonce value and check that it hasn't changed when we load an imported
module, rather than actually hash the whole file.
This is slightly complicated by the fact that we need to verify the
signature inside addModule, since we might otherwise consider that a
mdoule is "OutOfDate" when really it is the importer that is out of
date. I didn't see any regressions in module load time after this
change.
llvm-svn: 220493
This allows a module to specify that it logically contains a file, but that
said file is non-modular and intended for textual inclusion. This allows
layering checks to work properly in the presence of such files.
llvm-svn: 220448
Implicit module builds are not well-suited to a lot of build systems. In
particular, they fare badly in distributed build systems, and they lead to
build artifacts that are not tracked as part of the usual dependency management
process. This change allows explicitly-built module files (which are already
supported through the -emit-module flag) to be explicitly loaded into a build,
allowing build systems to opt to manage module builds and dependencies
themselves.
This is only the first step in supporting such configurations, and it should
be considered experimental and subject to change or removal for now.
llvm-svn: 220359
This patch generates some helper variables which used as a private copies of the corresponding original variables inside an OpenMP 'parallel' directive. These generated variables are initialized by default (with the default constructor, if any). In outlined function references to original variables are replaced by the references to these private helper variables. At the end of the initialization of the private variables and implicit barier is set by calling __kmpc_barrier(...) runtime function to be sure that all threads were initialized using original values of the variables.
Differential Revision: http://reviews.llvm.org/D4752
llvm-svn: 220262
Now that we no longer add mappings when there are no local entities,
there is no need to always bump the size of the tables that correspond
to ContinuousRangeMaps.
llvm-svn: 220208
This is a better fix for 'duplicate key' problems in module continuous
range maps (vs what I added in r215810) by not adding any mappings at
all when there are no local entities. Now it also covers selectors,
which were not always being bumped because the record SELECTOR_OFFSET is
not always emitted. I'll back out most of r215810 in a future commit,
since it should no longer be needed.
llvm-svn: 220207
Plumb through the full QualType of the TemplateArgument::Declaration, as
it's insufficient to only know whether the type is a reference or
pointer (that was necessary for mangling, but insufficient for debug
info). This shouldn't increase the size of TemplateArgument as
TemplateArgument::Integer is still longer by another 32 bits.
Several bits of code were testing that the reference-ness of the
parameters matched, but this seemed to be insufficient (various other
features of the type could've mismatched and wouldn't've been caught)
and unnecessary, at least insofar as removing those tests didn't cause
anything to fail.
(Richard - perchaps you can hypothesize why any of these checks might
need to test reference-ness of the parameters (& explain why
reference-ness is part of the mangling - I would've figured that for the
reference-ness to be different, a prior template argument would have to
be different). I'd be happy to add them in/beef them up and add test
cases if there's a reason for them)
llvm-svn: 219900
initializers, and captured VLA types so that we can
answer questions like "is this a bit-field" without
looking at the enclosing DeclContext. NFC.
llvm-svn: 219522
Assertion failed: "Computed __func__ length differs from type!"
Reworked PredefinedExpr representation with internal StringLiteral field for function declaration.
Differential Revision: http://reviews.llvm.org/D5365
llvm-svn: 219393
Includes parsing and semantic analysis for 'omp teams' directive support from OpenMP 4.0. Adds additional analysis to 'omp target' directive with 'omp teams' directive.
llvm-svn: 219385
This patch generates some helper variables that used as private copies of the corresponding original variables inside an OpenMP 'parallel' directive. These generated variables are initialized by copy using values of the original variables (with the copy constructor, if any). For arrays, initializator is generated for single element and in the codegen procedure this initial value is automatically propagated between all elements of the private copy.
In outlined function, references to original variables are replaced by the references to these private helper variables. At the end of the initialization of the private variables an implicit barier is generated by calling __kmpc_barrier(...) runtime function to be sure that all threads were initialized using original values of the variables.
Differential Revision: http://reviews.llvm.org/D5140
llvm-svn: 219306
This patch generates some helper variables that used as private copies of the corresponding original variables inside an OpenMP 'parallel' directive. These generated variables are initialized by copy using values of the original variables (with the copy constructor, if any). For arrays, initializator is generated for single element and in the codegen procedure this initial value is automatically propagated between all elements of the private copy.
In outlined function, references to original variables are replaced by the references to these private helper variables. At the end of the initialization of the private variables an implicit barier is generated by calling __kmpc_barrier(...) runtime function to be sure that all threads were initialized using original values of the variables.
Differential Revision: http://reviews.llvm.org/D5140
llvm-svn: 219297
This patch generates some helper variables that used as private copies of the corresponding original variables inside an OpenMP 'parallel' directive. These generated variables are initialized by copy using values of the original variables (with the copy constructor, if any). For arrays, initializator is generated for single element and in the codegen procedure this initial value is automatically propagated between all elements of the private copy.
In outlined function, references to original variables are replaced by the references to these private helper variables. At the end of the initialization of the private variables an implicit barier is generated by calling __kmpc_barrier(...) runtime function to be sure that all threads were initialized using original values of the variables.
Differential Revision: http://reviews.llvm.org/D5140
llvm-svn: 219295
Includes parsing and semantic analysis for 'omp teams' directive support from OpenMP 4.0. Adds additional analysis to 'omp target' directive with 'omp teams' directive.
llvm-svn: 219197
This patch implements collapsing of the loops (in particular, in
presense of clause 'collapse'). It calculates number of iterations N
and expressions nesessary to calculate the nested loops counters
values based on new iteration variable (that goes from 0 to N-1)
in Sema. It also adds Codegen for 'omp simd', which uses
(and tests) this feature.
Differential Revision: http://reviews.llvm.org/D5184
llvm-svn: 218743
We build a NestedNameSpecifier that records the CXXRecordDecl in which
__super appeared. Name lookup is performed in all base classes of the
recorded CXXRecordDecl. Use of __super is allowed only inside class and
member function scope.
llvm-svn: 218484
1. We were hitting the NextIsPrevious assertion because we were trying
to merge decl chains that were independent of each other because we had
no Sema object to allow them to find existing decls. This is fixed by
delaying loading the "preloaded" decls until Sema is available.
2. We were trying to get identifier info from an annotation token, which
asserts. The fix is to special-case the module annotations in the
preprocessed output printer.
Fixed in a single commit because when you hit 1 you almost invariably
hit 2 as well.
llvm-svn: 217550
The warning warns on TypedefNameDecls -- typedefs and C++11 using aliases --
that are !isReferenced(). Since the isReferenced() bit on TypedefNameDecls
wasn't used for anything before this warning it wasn't always set correctly,
so this patch also adds a few missing MarkAnyDeclReferenced() calls in
various places for TypedefNameDecls.
This is made a bit complicated due to local typedefs possibly being used only
after their local scope has closed. Consider:
template <class T>
void template_fun(T t) {
typename T::Foo s3foo; // YYY
(void)s3foo;
}
void template_fun_user() {
struct Local {
typedef int Foo; // XXX
} p;
template_fun(p);
}
Here the typedef in XXX is only used at end-of-translation unit, when YYY in
template_fun() gets instantiated. To handle this, typedefs that are unused when
their scope exits are added to a set of potentially unused typedefs, and that
set gets checked at end-of-TU. Typedefs that are still unused at that point then
get warned on. There's also serialization code for this set, so that the
warning works with precompiled headers and modules. For modules, the warning
is emitted when the module is built, for precompiled headers each time the
header gets used.
Finally, consider a function using C++14 auto return types to return a local
type defined in a header:
auto f() {
struct S { typedef int a; };
return S();
}
Here, the typedef escapes its local scope and could be used by only some
translation units including the header. To not warn on this, add a
RecursiveASTVisitor that marks all delcs on local types returned from auto
functions as referenced. (Except if it's a function with internal linkage, or
the decls are private and the local type has no friends -- in these cases, it
_is_ safe to warn.)
Several of the included testcases (most of the interesting ones) were provided
by Richard Smith.
(gcc's spelling -Wunused-local-typedefs is supported as an alias for this
warning.)
llvm-svn: 217298
on CXXRecordDecls when merging definitions, and make it pass by not trying to
save and restore this flag across AST serialization/deserialization. For
CXXRecordDecls, we have a separate mechanism to manage this.
llvm-svn: 216633
Only those callers who are dynamically passing ownership should need the
3 argument form. Those accepting the default ("do pass ownership")
should do so explicitly with a unique_ptr now.
llvm-svn: 216614
pattern of an alias template declaration. Use this to merge alias templates
properly when they're members of class template specializations.
llvm-svn: 216437
declarations. We can't expect to find them in the canonical definition
of the class, because that's not where they live.
This means we no longer reject real ODR violations with friend declarations,
but we weren't consistently doing so anyway.
llvm-svn: 216369
Predefined decls like 'Protocol' in objc are not loaded from AST files,
so we cannot rely on loading the canonical decl to complete the redecl
chain for redeclarations of these decls. The broken redecl chain was
non-circular, so looping over redecls() would hang.
llvm-svn: 215929
tables that correspond to ContinuousRangeMaps, since the keys to those
maps need to be unique, or we may map to the wrong offset.
This fixes a crash + malformed AST file seen when loading some modules
that import Cocoa on Darwin, which is a module with no contents except
imports of other modules. Unfortunately I have not been able to find a
reduced test case that reproduces this problem.
Also add an assert that we aren't mapping one key to multiple values
in CRM. We ought to be able to say there are no duplicate keys at all,
but there are a bunch of 0 -> 0 mappings that are showing up, probably
coming from the source location table.
llvm-svn: 215810
members from all redefinitions of a class that have them, in case the special
member is defined in one module but only declared in another.
llvm-svn: 215675
definitions (because some other declaration declares a special member that
isn't present in the canonical definition), we need to search *all* of them; we
can't just stop when we find the requested name in any of the definitions,
because that can fail to find things (and in particular, it can fail to find
the member of the canonical declaration and return a bogus ODR failure).
llvm-svn: 215612
redefinitions of that namespace have already been loaded. When writing out the
names in a namespace, if we see a name that is locally declared and had
imported declarations merged on top of it, export the local declaration as the
lookup result, because it will be the most recent declaration of that entity in
the redeclaration chain of an importer of the module.
llvm-svn: 215518
We already verified the primary module map file (either the one that
defines the top-level module, or the one that allows inferring it if it
is an inferred framework module). Now we also verify any other module
map files that define submodules, such as when there is a
module.private.modulemap file.
llvm-svn: 215455
According to the gcc docs, -include uses the current working directory
for the lookup instead of the main source file.
This patch gets rid of NormalizeIncludePath (which relied on an
implementation detail of FileManager / FileEntry for the include path
logic to work), and instead hands the correct lookup information down to
LookupFile.
This will allow us to change the FileEntry's behavior regarding its Name
caching.
llvm-svn: 215433
class Module. It's almost always going to be the same as
getContainingModule() for top-level modules, so just add a map to cover
the remaining cases. This lets us do less bookkeeping to keep the
ModuleMap fields up to date.
llvm-svn: 215268
also emit the updated 'operator delete' looked up for that destructor. Switch
from UpdateDecl to an actual update record when this happens due to implicitly
defining a special member function and unify this code path and the one for
instantiating a function definition.
llvm-svn: 215132
intent when we added remark support, but was never implemented in the general
case, because the first -R flags didn't need it. (-Rpass= had special handling
to accomodate its argument.)
-Rno-foo, -Reverything, and -Rno-everything can be used to turn off a remark,
or to turn on or off all remarks. Per discussion on cfe-commits, -Weverything
does not affect remarks, and -Reverything does not affect warnings or errors.
The only "real" -R flag we have right now is -Rmodule-build; that flag is
effectively renamed from -Wmodule-build to -Rmodule-build by this change.
-Wpass and -Wno-pass (and their friends) are also renamed to -Rpass and
-Rno-pass by this change; it's not completely clear whether we intended to have
a -Rpass (with no =pattern), but that is unchanged by this commit, other than
the flag name. The default pattern is effectively one which matches no passes.
In future, we may want to make the default pattern be .*, so that -Reverything
works for -Rpass properly.
llvm-svn: 215046
they're somehow missing a body. Looks like this was left behind when the loop
was generalized, and it's not been problematic before because without modules,
a used, implicit special member function declaration must be a definition.
This was resulting in us trying to emit a constructor declaration rather than
a definition, and producing a constructor missing its member initializers.
llvm-svn: 214473
of a function has a resolved exception specification, then all declarations of
the function do.
We should probably improve the AST representation to make this implicit (perhaps
only store the exception specification on the canonical declaration), but this
fixes things for now.
The testcase for this (which used to assert) also exposes the actual bug I was
trying to reduce here: we sometimes fail to emit the body of an imported
special member function definition. Fix for that to follow.
llvm-svn: 214458
FunctionProtoType::ExtProtoInfo. Most of the users of these fields don't care
about the other ExtProtoInfo bits and just want to talk about the exception
specification.
llvm-svn: 214450
* Add abbreviation for CXXMethodDecl and for FunctionProtoType. These come up
a *lot* in C++ modules.
* Allow typedef declarations to use the abbreviation if they're class members,
or if they're used.
In passing, add more record name records for Clang AST node kinds.
The downside is that we had already used up our allotment of 12 abbreviations,
so this pushes us to an extra bit on each record to support the extra abbrev
kinds, which increases file size by ~1%. This patch *barely* pays for that
through the other improvements, but we've got room for another 18 abbrevs,
so we should be able to make it much more profitable with future changes.
llvm-svn: 214024
* Track override set across module load and save
* Track originating module to allow proper re-export of #undef
* Make override set properly transitive when it picks up a #undef
This fixes nearly all of the remaining macro issues with self-host.
llvm-svn: 213922
thorough tests.
Original commit message:
[modules] Fix macro hiding bug exposed if:
* A submodule of module A is imported into module B
* Another submodule of module A that is not imported into B exports a macro
* Some submodule of module B also exports a definition of the macro, and
happens to be the first submodule of B that imports module A.
In this case, we would incorrectly determine that A's macro redefines B's
macro, and so we don't need to re-export B's macro at all.
This happens with the 'assert' macro in an LLVM self-host. =(
llvm-svn: 213416
This is breaking the system modules on Darwin, because something that
was defined and re-exported no longer is. Might be this patch, or might
just be a really poor interaction with an existing visibility bug.
This reverts commit r213348.
llvm-svn: 213395