Scalar reloads in the generated entering block were not recognized as
dominating the subregions locks when there were multiple entering
nodes. This resulted in values defined in there not being copied.
As a fix, we unconditionally add the BBMap of the generated entering
node to the generated entry. This fixes part of llvm.org/PR25439.
This reverts 252449 and reapplies r252445. Its test was failing
indeterministically due to r252375 which was reverted in r252522.
llvm-svn: 252540
Be honest about using iterator semantics in `SlotIndex::getNextSlot()`
and `SlotIndex::getPrevSlot()`. Instead of calling `getNextNode()` --
which is documented (but fails) to check for the sentinel -- call
`&*++getIterator()`.
This is (surprisingly!) a NFC commit. `ilist_traits<IndexListEntry>`
has an `ilist_half_node<IndexListEntry>` as a sentinel (and no other
fields), and so the layout of `ilist<IndexListEntry>` is:
--
struct ilist<IndexListEntry> {
ilist_half_node<IndexListEntry> Sentinel;
IndexListEntry *Head;
IndexListEntry *getHead() { return Head; }
IndexListEntry *getSentinel() { return cast<...>(&Sentinel); }
};
--
In memory, this happens to look just like:
--
struct ilist<IndexListEntry> {
ilist_node<IndexListEntry> Sentinel;
IndexListEntry *getHead() { return Sentinel.getNext(); }
IndexListEntry *getSentinel() { return cast<...>(&Sentinel); }
};
--
As a result, `ilist_node<IndexListEntry>::getNextNode()` that checks
`getNext()` of the possible sentinel will get a pointer to the head of
the list; it will never detect the sentinel, and will return the
sentinel itself instead of `nullptr` in the special cases.
Since `getNextNode()` and `getPrevNode()` don't work, just be honest
that we're not checking for the end/beginning of the list here. Since
this code works, I guess we must never go past the sentinel.
(It's possible we're just getting lucky, and the new code will get
"lucky" in the same situations. To properly fix that hypothetical bug,
we would need to check the iterator against `end()`/`begin()`.)
llvm-svn: 252538
SCEVUnionPredicate is copied constructed here: lib/Transforms/Scalar/LoopDistribute.cpp:793
and move assigned (which can use the base class's copy ctor just
fine/without extra cost (I'd add it if it weren't for MSVC's issues
meaning = default is insufficient)) here: lib/Transforms/Utils/LoopVersioning.cpp:46
llvm-svn: 252537
Relying on manual Python C API calls is error prone, especially
when trying to maintain compatibility with Python 2 and Python 3.
This patch additionally fixes what appears to be a potentially
serious memory leak, in that were were incref'ing two values
returned from the session dictionary but never decref'ing them.
There was a comment indicating that it was intentional, but the
reasoning was, I believe, faulty and it resulted in a legitimate
memory leak.
Switching everything to PythonObject based classes solves both
the compatibility issues as well as the resource leak issues.
llvm-svn: 252536
This is a prerequisite for further optimisations of these functions,
which will be commited as a separate patch.
Differential Revision: http://reviews.llvm.org/D14219
llvm-svn: 252535
Summary:
This patch does a couple of things:
- Adds a new argument `--shared-mode` which accepts a list of components and prints whether or not the provided components need to be linked statically or shared.
- Fixes `--libnames` when CMake BUILD_SHARED_LIBS is used.
- Fixes `--libnames`, `--libs`, and `--libfiles` for dylib when static components aren't installed.
- Fixes `--libnames`, `--libs`, `--libfiles`, and `--components` to use LLVM_DYLIB_COMPONENTS as the component manifest for dylib linking.
- Uses the host platform's usual convention for filename extensions and such, instead of always defaulting to Unix-izms.
Because I don't own a Mac, I am not able to test the Mac platform dependent stuff locally. If someone would be willing to run a build for me on their machine (unless there's a better option), I'd appreciate it.
Reviewers: jfb, brad.king, whitequark, beanz
Subscribers: beanz, jauhien, llvm-commits
Differential Revision: http://reviews.llvm.org/D13198
llvm-svn: 252532
Not making sure there are thin libraries results in some difficult to diagnose build failures. This check should make those build failures go away.
llvm-svn: 252527
The dominance of the generated non-affine subregion block was based on
the scop's merge block, therefore resulted in an invalid DominanceTree.
It resulted in some values as assumed to be unusable in the actual
generated exit block.
We detect the case that the exit block has been moved and decide
dominance using the BB at the original exit. If we create another exit
node, that exit nodes is dominated by the one generated from where the
original exit resides. This fixes llvm.org/PR25438 and part of
llvm.org/PR25439.
llvm-svn: 252526
It introduced indeterminism as it was iterating over an address-indexed
hashtable. The corresponding bug PR25438 will be fixed in a successive
commit.
llvm-svn: 252522
They get treated as special RLE encoding symbols and packets get
corrupted. Most other packet types already know about this apparently,
but QEnvironment missed these two.
Should fix PR25300.
llvm-svn: 252521
The motivation for this patch starts with the epic fail example in PR18007:
https://llvm.org/bugs/show_bug.cgi?id=18007
...unfortunately, this patch makes no difference for that case, but it solves some
simpler cases. We'll get there some day. :)
The current 'or' matching code was using computeKnownBits() via
isBaseWithConstantOffset() -> MaskedValueIsZero(), but that's an unnecessarily limited use.
We can do more by copying the logic in ValueTracking's haveNoCommonBitsSet(), so we can
treat the 'or' as if it was an 'add'.
There's a TODO comment here because we should lift the bit-checking logic into a helper
function, so it's not duplicated in DAGCombiner.
An example of the better LEA matching:
leal (%rdi,%rdi), %eax
andl $1, %esi
orl %esi, %eax
Becomes:
andl $1, %esi
leal (%rsi,%rdi,2), %eax
Differential Revision: http://reviews.llvm.org/D13956
llvm-svn: 252515
For some reason we'd never run MachineVerifier on WinEH code, and you
explicitly have to ask for it with llc. I added it to a few test cases
to get some coverage.
Fixes PR25461.
llvm-svn: 252512
When a struct's size is not a power of 2, the corresponding _Atomic() type is
promoted to the nearest. We already correctly handled normal C++ expressions of
this form, but direct calls to the __c11_atomic_whatever builtins ended up
performing dodgy operations on the smaller non-atomic types (e.g. memcpy too
much). Later optimisations removed this as undefined behaviour.
This patch converts EmitAtomicExpr to allocate its temporaries at the full
atomic width, sidestepping the issue.
llvm-svn: 252507
In this way, when a language needs to tell itself things that are not bound to a type but to a value (imagine a base-class relation, this is not about the type, but about the ValueObject), it can do so in a clean and general fashion
The interpretation of the values of the flags is, of course, up to the language that owns the value (the value object's runtime language, that is)
llvm-svn: 252503
This patch makes ASAN for aarch64 use the same shadow offset for all
currently supported VMAs (39 and 42 bits). The shadow offset is the
same for 39-bit (36).
llvm-svn: 252497
This patch makes ASAN for aarch64 use the same shadow offset for all
currently supported VMAs (39 and 42 bits). The shadow offset is the
same for 39-bit (36). Similar to ppc64 port, aarch64 transformation
also requires to use an add instead of 'or' for 42-bit VMA.
llvm-svn: 252495
Summary: Use "auto" when the type name is redundant
Reviewers: aaron.ballman
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D14501
llvm-svn: 252494
Summary: Call instructions that are from the same line and same basic block needs to have separate discriminators to distinguish between different callsites.
Reviewers: davidxl, dnovillo, dblaikie
Subscribers: dblaikie, probinson, llvm-commits
Differential Revision: http://reviews.llvm.org/D14464
llvm-svn: 252492
When GlobalOpt splits an internal, global variable with an aggregate type, it
should propagate the externally_initialized flag to the newly created globals.
This makes the pass safe for our downstream use of this flag, while still
allowing some useful optimisations (such as removing dead parts of the split
aggregate) to be performed.
Differential Revision: http://reviews.llvm.org/D13382
llvm-svn: 252490
1) Add get_ptr_type() method to all wait flag types.
2) Flag in sleep_loc may change type by the time the resume is called from
__kmp_null_resume_wrapper. We use get_ptr_type to obtain the real type
and compare it to the casted object received. If they don't match, we know
the flag has changed (already resumed and replaced by another flag). If they
match, it doesn't hurt to go ahead and resume it.
Differential Revision: http://reviews.llvm.org/D14458
llvm-svn: 252487