DefinedSynthetic is not created for a real ELF object, so it doesn't
have to be a template function. It has a virtual st_value, which is
either 32 bit or 64 bit, but we can simply use 64 bit.
llvm-svn: 290241
The vectorcall calling convention specifies that arguments to functions are to be passed in registers, when possible.
vectorcall uses more registers for arguments than fastcall or the default x64 calling convention use.
The vectorcall calling convention is only supported in native code on x86 and x64 processors that include Streaming SIMD Extensions 2 (SSE2) and above.
The current implementation does not handle Homogeneous Vector Aggregates (HVAs) correctly and this review attempts to fix it.
This aubmit also includes additional lit tests to cover better HVAs corner cases.
Differential Revision: https://reviews.llvm.org/D27392
llvm-svn: 290240
We probably would want to avoid fatal() if we can in context of librarification,
but for me reason of that patch is to help D27900 go.
D27900 changes errors reporting to something like
error: text1
note: text2
note: text3
where hint used to provide additional information about location. In that case
I can't just call fatal() because user will not see notes after that what adds additional complication to handle.
So It is good to switch fatal() to error() where it is possible.
Also it adds testcase with broken relocation number.
Previously we did not have any, It checks that error() instead of fatal() works fine.
Differential revision: https://reviews.llvm.org/D27973
llvm-svn: 290239
It was revealed by D27831.
If we have linkerscript that includes another one that sets OUTPUT for example:
RUN: echo "INCLUDE \"foo.script\"" > %t.script
RUN: echo "OUTPUT(\"%t.out\")" > %T/foo.script
then we do:
void ScriptParser::readInclude() {
...
std::unique_ptr<MemoryBuffer> &MB = *MBOrErr;
tokenize(MB->getMemBufferRef());
OwningMBs.push_back(std::move(MB));
}
void ScriptParser::readOutput() {
...
Config->OutputFile = unquote(Tok);
...
}
Problem is that OwningMBs are destroyed after script parser do its job.
So all Toks are dead and Config->OutputFile points to destroyed data.
Patch suggests to save all included scripts into using string Saver.
Differential revision: https://reviews.llvm.org/D27987
llvm-svn: 290238
Older versions of BFD generate libraries with .MIPS.abiflags that only
concatenate the individual .MIPS.abiflags sections instead of merging.
Patch by Alexander Richardson.
Differential revision: https://reviews.llvm.org/D27770
llvm-svn: 290237
Summary:
This follows up to r290217, and makes functions on ASTRecordReader consistent
and valid style.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D28008
llvm-svn: 290236
In r267672, where the loop distribution pragma was introduced, I tried
it hard to keep the old behavior for opt: when opt is invoked
with -loop-distribute, it should distribute the loop (it's off by
default when ran via the optimization pipeline).
As MichaelZ has discovered this has the unintended consequence of
breaking a very common developer work-flow to reproduce compilations
using opt: First you print the pass pipeline of clang
with -debug-pass=Arguments and then invoking opt with the returned
arguments.
clang -debug-pass will include -loop-distribute but the pass is invoked
with default=off so nothing happens unless the loop carries the pragma.
While through opt (default=on) we will try to distribute all loops.
This changes opt's default to off as well to match clang. The tests are
modified to explicitly enable the transformation.
llvm-svn: 290235
effect they would have in C++11. In particular, they do not prevent
value-initialization from performing zero-initialization, nor do they prevent a
struct from being an aggregate.
llvm-svn: 290229
we used to print UNKNOWN instructions when the instruction to be printer was not
yet inserted in any BB: in that case the pretty printer would not be able to
compute a TII as the instruction does not belong to any BB or function yet.
This patch explicitly passes the TII to the pretty-printer.
Differential Revision: https://reviews.llvm.org/D27645
llvm-svn: 290228
function. (This change would also allow us to handle default template arguments
in partial specializations if the standard ever permits them.)
llvm-svn: 290225
The usual method, and the one employed before my change, of displaying strings in natvis is to make use of the "<variable>,s" format specifier; however, this method only works for null-terminated strings. My fix here is to use the "<pointer>,[size]" format specifier to display a bounded array, and then cast it to "const char*", which in the MSVC debugger has the desired effect of rendering the character array as a string.
Differential Revision: https://reviews.llvm.org/D27972
llvm-svn: 290224
No existing client is passing a non-null value here. This will come back
in a slightly different form as part of the type identifier summary work.
Differential Revision: https://reviews.llvm.org/D28006
llvm-svn: 290222
Summary:
The module system supports accompanying a primary module (say Foo) with
an auxiliary "private" module (defined in an adjacent module.private.modulemap
file) that augments the primary module when associated private headers are
available. The feature is intended to be used to augment the primary
module with a submodule (say Foo.Private), however some users in the wild
are choosing to augment the primary module with an additional top-level module
with a "similar" name (in all cases so far: FooPrivate).
This "works" when a user of the module initially imports a private header,
such as '#import "Foo/something_private.h"' since the Foo import winds up
importing FooPrivate in passing. But if the import is subsequently recorded
in a PCH file, reloading the PCH will fail to validate because of a cross-check
that attempts to find the module.modulemap (or module.private.modulemap) using
HeaderSearch algorithm, applied to the "FooPrivate" name. Since it's stored in
Foo.framework/Modules, not FooPrivate.framework/Modules, the check fails and
the PCH is rejected.
This patch adds a compensatory workaround in the HeaderSearch algorithm
when searching (and failing to find) a module of the form FooPrivate: the
name used to derive filesystem paths is decoupled from the module name
being searched for, and if the initial search fails and the module is
named "FooPrivate", the filesystem search name is altered to remove the
"Private" suffix, and the algorithm is run a second time (still looking for
a module named FooPrivate, but looking in directories derived from Foo).
Accompanying this change is a new warning that triggers when a user loads
a module.private.modulemap that defines a top-level module with a different
name from the top-level module defined in its adjacent module.modulemap.
Reviewers: doug.gregor, manmanren, bruno
Subscribers: bruno, cfe-commits
Differential Revision: https://reviews.llvm.org/D27852
llvm-svn: 290219
Summary:
Experiments show that on Android the current values result in too much
of the memory consumption for all quarantined chunks.
Reviewers: kcc, eugenis
Subscribers: mgorny, danalbert, srhines, llvm-commits, kubabrecka
Patch by Aleksey Shlyapnikov.
Differential Revision: https://reviews.llvm.org/D27873
llvm-svn: 290218
Summary:
For ASTDeclReader and ASTStmtReader, every parameter "unsigned &Idx" ultimately
comes from a variable that is defined on the stack, next to the RecordData. This
change moves that index into the ASTRecordReader.
TypeLocReader cannot be transitioned, due to TableGen-generated code which calls
ASTReader::GetTypeSourceInfo.
Reviewers: rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D27836
llvm-svn: 290217
We're seeing some very occasional failures in these tests where the
mini-driver dies with a SIGPIPE. We don't use SIGPIPE for anything, and
the main lldb driver program already ignores SIGPIPE, so ignoring it in
the mini-driver is a good way to remove these spurious failures.
<rdar://problem/29740488>
llvm-svn: 290216
We're currently doing nearly the same thing for @llvm.objectsize in
three different places: two of them are missing checks for overflow,
and one of them could subtly break if InstCombine gets much smarter
about removing alloc sites. Seems like a good idea to not do that.
llvm-svn: 290214
GlobPattern is a class to handle glob pattern matching. Currently
only LLD is using that, but technically that feature is not specific
to linkers, so in this patch I move that file to LLVM.
Differential Revision: https://reviews.llvm.org/D27969
llvm-svn: 290212
Summary:
In getRangeForAffineAR we compute ranges for affine exprs E = A + B*C,
where ranges for A, B, and C are known. To avoid overflow, we need to
operate on a bigger bitwidth, and originally we chose 2*x+1 for this
(x being the original bitwidth). However, it is safe to use just 2*x:
A+B*C <= (2^x - 1) + (2^x - 1)*(2^x - 1) =
= 2^x - 1 + 2^2x - 2^x - 2^x + 1 =
= 2^2x - 2^x <= 2^2x - 1
Unnecessary extending of bitwidths results in noticeable slowdowns: ranges
perform arithmetic operations using APInt, which are much slower when bitwidths
are bigger than 64.
Reviewers: sanjoy, majnemer, chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D27795
llvm-svn: 290211
In stack-reuse-miscompile.cpp, the allocas for the temps come out in
a different order depending on whether the dialect is C++03 or
C++11. Specify C++03 explicitly to avoid depending on the default.
Differential Revision: http://reviews.llvm.org/D27956
llvm-svn: 290208
If a dtor has no interesting members, then it ends up being nothrow,
which affects the generated IR. Modify some tests to tolerate this
difference between C++03 and C++11.
Differential Revision: http://reviews.llvm.org/D27936
llvm-svn: 290207
In C++11 we don't emit vtables as eagerly as we do for C++03, so
fiddle the tests to emit them when the test expects them.
Differential Revision: http://reviews.llvm.org/D27994
llvm-svn: 290205
This patch adds support for YAML<->DWARF for debug_info sections.
This re-lands r290147, after fixing the issue that caused bots to fail (thank you UBSan!).
llvm-svn: 290204
This change introduces UsingPackDecl as a marker for the set of UsingDecls
produced by pack expansion of a single (unresolved) using declaration. This is
not strictly necessary (we just need to be able to map from the original using
declaration to its expansions somehow), but it's useful to maintain the
invariant that each declaration reference instantiates to refer to one
declaration.
This is a re-commit of r290080 (reverted in r290092) with a fix for a
use-after-lifetime bug.
llvm-svn: 290203
Summary:
With the previous modifications, the code works on ARM32. The random shuffle
test is unsupported on 32-bit platforms for the moment and being marked as
such. There is no hardware support for the checksum computation yet, this will
come at a later point.
Reviewers: kcc, alekseyshl
Subscribers: llvm-commits, aemerson, rengolin, mgorny
Differential Revision: https://reviews.llvm.org/D27957
llvm-svn: 290201
Also make the summary ref and call graph vectors immutable. This means
a smaller API surface and fewer places to audit for non-determinism.
Differential Revision: https://reviews.llvm.org/D27875
llvm-svn: 290200
Make it clear that TripCount is the upper bound of the iteration on which
control exits LatchBlock.
Differential Revision: https://reviews.llvm.org/D26675
llvm-svn: 290199