than reusing the "overridden buffer" mechanism. This will allow us to make
embedded files and overridden files behave differently in future.
llvm-svn: 254121
https://gcc.gnu.org/onlinedocs/gcc/Typeof.html
Differences from the GCC extension:
* __auto_type is also permitted in C++ (but only in places where
it could appear in C), allowing its use in headers that might
be shared across C and C++, or used from C++98
* __auto_type can be combined with a declarator, as with C++ auto
(for instance, "__auto_type *p")
* multiple variables can be declared in a single __auto_type
declaration, with the C++ semantics (the deduced type must be
the same in each case)
This patch also adds a missing restriction on applying typeof to
a bit-field, which GCC has historically rejected in C (due to
lack of clarity as to whether the operand should be promoted).
The same restriction also applies to __auto_type in C (in both
GCC and Clang).
This also fixes PR25449.
Patch by Nicholas Allegra!
llvm-svn: 252690
we can't load that file due to a configuration mismatch, and implicit module
building is disabled, and the user turns off the error-by-default warning for
that situation, then fall back to textual inclusion for the module rather than
giving an error if any of its headers are included.
llvm-svn: 252114
This new builtin template allows for incredibly fast instantiations of
templates like std::integer_sequence.
Performance numbers follow:
My work station has 64 GB of ram + 20 Xeon Cores at 2.8 GHz.
__make_integer_seq<std::integer_sequence, int, 90000> takes 0.25
seconds.
std::make_integer_sequence<int, 90000> takes unbound time, it is still
running. Clang is consuming gigabytes of memory.
Differential Revision: http://reviews.llvm.org/D13786
llvm-svn: 252036
Introduce the notion of a module file extension, which introduces
additional information into a module file at the time it is built that
can then be queried when the module file is read. Module file
extensions are identified by a block name (which must be unique to the
extension) and can write any bitstream records into their own
extension block within the module file. When a module file is loaded,
any extension blocks are matched up with module file extension
readers, that are per-module-file and are given access to the input
bitstream.
Note that module file extensions can only be introduced by
programmatic clients that have access to the CompilerInvocation. There
is only one such extension at the moment, which is used for testing
the module file extension harness. As a future direction, one could
imagine allowing the plugin mechanism to introduce new module file
extensions.
llvm-svn: 251955
Use the *current* state of "is-moduleness" rather than the state at
serialization time so that if we read a builtin identifier from a module
that wasn't "interesting" to that module, we will still write it out to
a PCH that imports that module.
Otherwise, we would get mysterious "unknown builtin" errors when using
PCH+modules.
rdar://problem/23287656
llvm-svn: 251565
Summary: It breaks the build for the ASTMatchers
Subscribers: klimek, cfe-commits
Differential Revision: http://reviews.llvm.org/D13893
llvm-svn: 250827
Summary:
This change adds support for `__builtin_ms_va_list`, a GCC extension for
variadic `ms_abi` functions. The existing `__builtin_va_list` support is
inadequate for this because `va_list` is defined differently in the Win64
ABI vs. the System V/AMD64 ABI.
Depends on D1622.
Reviewers: rsmith, rnk, rjmccall
CC: cfe-commits
Differential Revision: http://reviews.llvm.org/D1623
llvm-svn: 247941
them directly to the control block. These are fairly large, and in a build with
lots of modules / chained PCH, we don't need to read most of them. No
functionality change intended.
llvm-svn: 247055
r246546, with a workaround for an MSVC 2013 miscompile and an MSVC 2015
rejects-valid.
Original commit message:
[modules] Rework serialized DeclContext lookup table management. Instead of
walking the loaded ModuleFiles looking for lookup tables for the context, store
them all in one place, and merge them together if we find we have too many
(currently, more than 4). If we do merge, include the merged form in our
serialized lookup table, so that downstream readers never need to look at our
imports' tables.
This gives a huge performance improvement to builds with very large numbers of
modules (in some cases, more than a 2x speedup was observed).
llvm-svn: 246582
predictable diagnostic experience. The hash-of-DeclID order we were using
before gave different results on Win32 due to a different predefined
declaration of __builtin_va_list.
llvm-svn: 246521
walking the loaded ModuleFiles looking for lookup tables for the context, store
them all in one place, and merge them together if we find we have too many
(currently, more than 4). If we do merge, include the merged form in our
serialized lookup table, so that downstream readers never need to look at our
imports' tables.
This gives a huge performance improvement to builds with very large numbers of
modules (in some cases, more than a 2x speedup was observed).
llvm-svn: 246497
DeclarationName (because all ctor names are considered the same, and so on).
Reflect this in the type used as the lookup table key. As a side-effect, remove
one copy of the duplicated code used to compute the hash of the key.
llvm-svn: 246124
Adds parsing/sema analysis/serialization/deserialization for array sections in OpenMP constructs (introduced in OpenMP 4.0).
Currently it is allowed to use array sections only in OpenMP clauses that accepts list of expressions.
Differential Revision: http://reviews.llvm.org/D10732
llvm-svn: 245937
Instead of eagerly deserializing a list of DeclIDs when we load a module file
and doing a binary search to find the redeclarations of a decl, store a list of
redeclarations of each chain before the first declaration and load it directly.
llvm-svn: 245789
all modules and reduce the number of declarations we load when loading a
redeclaration chain.
The new approach is:
* when loading the first declaration of an entity within a module file, we
first load all declarations of the entity that were imported into that
module file, and then load all the other declarations of that entity from
that module file and build a suitable decl chain from them
* when loading any other declaration of an entity, we first load the first
declaration from the same module file
As before, we complete redecl chains through name lookup where necessary.
To make this work, I also had to change the way that template specializations
are stored -- it no longer suffices to track only canonical specializations; we
now emit all "first local" declarations when emitting a list of specializations
for a template.
On one testcase with several thousand imported module files, this reduces the
total runtime by 72%.
llvm-svn: 245779
file in the .pcm files. This allows a smaller set of files to be sent to a
remote build worker when building with explicit modules (for instance, module
map files need not be sent along with the corresponding precompiled modules).
This doesn't actually make the embedded files visible to header search, so
it's not useful as a packaging format for public header files.
llvm-svn: 245028
files: include the .pcm file itself in the .d output, rather than including its
own input files. Other forms of module file continue to be transparent for .d
output.
Arguably, the input files for the .pcm file are still inputs to the
compilation, but that's unnecessary for make-like build systems (where the
mtime of the .pcm file is sufficient) and harmful for smarter build systems
that know about module files and want to track only the local dependencies.
llvm-svn: 244923
emit lexical contents for a declaration for another module. Track which module
those contents came from, and ensure that we only grab the lexical contents
from a single such instantiation.
llvm-svn: 244682
arguments because the reloaded form might have become non-canonical across the
serialization/deserialization step (this particularly happens when the
canonical form of the type involves an expression).
llvm-svn: 244409
determine the primary context, rather than sometimes registering the lookup
table on the wrong context.
This exposed a couple of bugs:
* the odr violation check didn't deal properly with mergeable declarations
if the declaration retained by name lookup wasn't in the canonical
definition of the class
* the (broken) RewriteDecl mechanism would emit two name lookup tables for
the same DeclContext into the same module file (one as part of the
rewritten declaration and one as a visible update for the old declaration)
These are both fixed too.
llvm-svn: 244192
useless return value. Switch to using it directly when completing the
redeclaration chain for an anonymous declaration, and reduce the set of
declarations that we load in the process to just those of the right kind.
llvm-svn: 244161
In llvm commit r243581, a reverse range adapter was added which allows
us to change code such as
for (auto I = Fields.rbegin(), E = Fields.rend(); I != E; ++I) {
in to
for (const FieldDecl *I : llvm::reverse(Fields))
This commit changes a few of the places in clang which are eligible to use
this new adapter.
llvm-svn: 243663
chain and fix the cases where it fires.
* Handle the __va_list_tag as a predefined decl. Previously we failed to merge
sometimes it because it's not visible to name lookup. (In passing, remove
redundant __va_list_tag typedefs that we were creating for some ABIs. These
didn't affect the mangling or representation of the type.)
* For Decls derived from Redeclarable that are not in fact redeclarable
(implicit params, function params, ObjC type parameters), remove them from
the list of expected redeclarable decls.
llvm-svn: 243259
the identifier table. This is redundant, since the TU-scope lookups are also
serialized as part of the TU DeclContext, and wasteful in a number of ways. We
still emit the decls for PCH / preamble builds, since for those we want
identical results, not merely semantically equivalent ones.
llvm-svn: 242855
- introduces a new cc1 option -fmodule-format=[raw,obj]
with 'raw' being the default
- supports arbitrary module container formats that libclang is agnostic to
- adds the format to the module hash to avoid collisions
- splits the old PCHContainerOperations into PCHContainerWriter and
a PCHContainerReader.
Thanks to Richard Smith for reviewing this patch!
llvm-svn: 242499
before the first imported declaration.
We don't need to track all formerly-canonical declarations of an entity; it's sufficient to track those ones for which no other formerly-canonical declaration was imported into the same module. We call those ones "key declarations", and use them as our starting points for collecting redeclarations and performing namespace lookups.
llvm-svn: 241999
This patch adds ObjectFilePCHContainerOperations uses the LLVM backend
to put the contents of a PCH into a __clangast section inside a COFF, ELF,
or Mach-O object file container.
This is done to facilitate module debugging by makeing it possible to
store the debug info for the types defined by a module alongside the AST.
rdar://problem/20091852
llvm-svn: 241620
The __kindof type qualifier can be applied to Objective-C object
(pointer) types to indicate id-like behavior, which includes implicit
"downcasting" of __kindof types to subclasses and id-like message-send
behavior. __kindof types provide better type bounds for substitutions
into unspecified generic types, which preserves more type information.
llvm-svn: 241548
Objective-C type arguments can be provided in angle brackets following
an Objective-C interface type. Syntactically, this is the same
position as one would provide protocol qualifiers (e.g.,
id<NSCopying>), so parse both together and let Sema sort out the
ambiguous cases. This applies both when parsing types and when parsing
the superclass of an Objective-C class, which can now be a specialized
type (e.g., NSMutableArray<T> inherits from NSArray<T>).
Check Objective-C type arguments against the type parameters of the
corresponding class. Verify the length of the type argument list and
that each type argument satisfies the corresponding bound.
Specializations of parameterized Objective-C classes are represented
in the type system as distinct types. Both specialized types (e.g.,
NSArray<NSString *> *) and unspecialized types (NSArray *) are
represented, separately.
llvm-svn: 241542
Any extra features from -fmodule-feature are part of the module hash and
need to get validated on load. Also print them with -module-file-info.
llvm-svn: 240433
The patch is generated using this command:
$ tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
work/llvm/tools/clang
To reduce churn, not touching namespaces spanning less than 10 lines.
llvm-svn: 240270
This is a better approach to fixing the undefined behaviour I tried to
fix in r240228. This data doesn't necessarily have suitable alignment
for uint64_t, so use unaligned_uint64_t instead.
This fixes 225 test failures when clang is built with ubsan.
llvm-svn: 240247
We interpret Blob as an array of uint64_t here, but there's no reason
to think that it has suitable alignment. Instead, read the data in in
an alignment-safe way and store it in a std::vector.
This fixes 225 test failures when clang is built with ubsan.
llvm-svn: 240228
A PCHContainerOperations abstract interface provides operations for
creating and unwrapping containers for serialized ASTs (precompiled
headers and clang modules). The default implementation is
RawPCHContainerOperations, which uses a flat file for the output.
The main application for this interface will be an
ObjectFilePCHContainerOperations implementation that uses LLVM to
wrap the module in an ELF/Mach-O/COFF container to store debug info
alongside the AST.
rdar://problem/20091852
llvm-svn: 240225
If the type isn't trivially moveable emplace can skip a potentially
expensive move. It also saves a couple of characters.
Call sites were found with the ASTMatcher + some semi-automated cleanup.
memberCallExpr(
argumentCountIs(1), callee(methodDecl(hasName("push_back"))),
on(hasType(recordDecl(has(namedDecl(hasName("emplace_back")))))),
hasArgument(0, bindTemporaryExpr(
hasType(recordDecl(hasNonTrivialDestructor())),
has(constructExpr()))),
unless(isInTemplateInstantiation()))
No functional change intended.
llvm-svn: 238601
Emit warning when operand to `delete` is allocated with `new[]` or
operand to `delete[]` is allocated with `new`.
rev 2 update:
`getNewExprFromInitListOrExpr` should return `dyn_cast_or_null`
instead of `dyn_cast`, since `E` might be null.
Reviewers: rtrieu, jordan_rose, rsmith
Subscribers: majnemer, cfe-commits
Differential Revision: http://reviews.llvm.org/D4661
llvm-svn: 237608
With this change, enabling -fmodules-local-submodule-visibility results in name
visibility rules being applied to submodules of the current module in addition
to imported modules (that is, names no longer "leak" between submodules of the
same top-level module). This also makes it much safer to textually include a
non-modular library into a module: each submodule that textually includes that
library will get its own "copy" of that library, and so the library becomes
visible no matter which including submodule you import.
llvm-svn: 237473
This reverts commit 742dc9b6c9686ab52860b7da39c3a126d8a97fbc.
This is generating multiple segfaults in our internal builds.
Test case coming up shortly.
llvm-svn: 237391
Emit warning when operand to `delete` is allocated with `new[]` or
operand to `delete[]` is allocated with `new`.
Reviewers: rtrieu, jordan_rose, rsmith
Subscribers: majnemer, cfe-commits
Differential Revision: http://reviews.llvm.org/D4661
llvm-svn: 237368
clang::MacroDefinition now models the currently-defined value of a macro. The
previous MacroDefinition type, which represented a record of a macro definition
directive for a detailed preprocessing record, is now called MacroDefinitionRecord.
llvm-svn: 236400
It has no place there; it's not a property of the Module, and it makes
restoring the visibility set when we leave a submodule more difficult.
llvm-svn: 236300
Modules builds fundamentally have a non-linear macro history. In the interest
of better source fidelity, represent the macro definition information
faithfully: we have a linear macro directive history within each module, and at
any point we have a unique "latest" local macro directive and a collection of
visible imported directives. This also removes the attendent complexity of
attempting to create a correct MacroDirective history (which we got wrong
in the general case).
No functionality change intended.
llvm-svn: 236176
Previously we'd defer this determination until writing the AST, which doesn't
allow us to use this information when building other submodules of the same
module. This change also allows us to use a uniform mechanism for writing
module macro records, independent of whether they are local or imported.
llvm-svn: 235614