Current implementation may end up emitting an undefined reference for
an "inline __attribute__((always_inline))" function by generating an
"available_externally alwaysinline" IR function for it and then failing to
inline all the calls. This happens when a call to such function is in dead
code. As the inliner is an SCC pass, it does not process dead code.
Libc++ relies on the compiler never emitting such undefined reference.
With this patch, we emit a pair of
1. internal alwaysinline definition (called F.alwaysinline)
2a. A stub F() { musttail call F.alwaysinline }
-- or, depending on the linkage --
2b. A declaration of F.
The frontend ensures that F.inlinefunction is only used for direct
calls, and the stub is used for everything else (taking the address of
the function, really). Declaration (2b) is emitted in the case when
"inline" is meant for inlining only (like __gnu_inline__ and some
other cases).
This approach, among other nice properties, ensures that alwaysinline
functions are always internal, making it impossible for a direct call
to such function to produce an undefined symbol reference.
This patch is based on ideas by Chandler Carruth and Richard Smith.
llvm-svn: 247494
Current implementation may end up emitting an undefined reference for
an "inline __attribute__((always_inline))" function by generating an
"available_externally alwaysinline" IR function for it and then failing to
inline all the calls. This happens when a call to such function is in dead
code. As the inliner is an SCC pass, it does not process dead code.
Libc++ relies on the compiler never emitting such undefined reference.
With this patch, we emit a pair of
1. internal alwaysinline definition (called F.alwaysinline)
2a. A stub F() { musttail call F.alwaysinline }
-- or, depending on the linkage --
2b. A declaration of F.
The frontend ensures that F.inlinefunction is only used for direct
calls, and the stub is used for everything else (taking the address of
the function, really). Declaration (2b) is emitted in the case when
"inline" is meant for inlining only (like __gnu_inline__ and some
other cases).
This approach, among other nice properties, ensures that alwaysinline
functions are always internal, making it impossible for a direct call
to such function to produce an undefined symbol reference.
This patch is based on ideas by Chandler Carruth and Richard Smith.
llvm-svn: 247465
Several tests wouldn't pass when executed on an armv7a_pc_linux triple
due to the non-default arm_aapcs calling convention produced on the
function definitions in the IR output. Account for this with the
application of a little regex.
Patch by Ying Yi.
llvm-svn: 240971
We used to have a flag to enable module maps, and two more flags to enable
implicit module maps. This is all redundant; we don't need any flag for
enabling module maps in the abstract, and we don't usually have -fno- flags for
-cc1. We now have just a single flag, -fimplicit-module-maps, that enables
implicitly searching the file system for module map files and loading them.
The driver interface is unchanged for now. We should probably rename
-fmodule-maps to -fimplicit-module-maps at some point.
llvm-svn: 239789
Currently we emit DeferredDeclsToEmit in reverse order. This patch changes that.
The advantages of the change are that
* The output order is a bit closer to the source order. The change to
test/CodeGenCXX/pod-member-memcpys.cpp is a good example.
* If we decide to deffer more, it will not cause as large changes in the
estcases as it would without this patch.
llvm-svn: 226751
recursively within the emission of another inline function. This ultimately
led to us emitting the same inline function definition twice, which we then
rejected because we believed we had a mangled name conflict.
llvm-svn: 215579
also emit the updated 'operator delete' looked up for that destructor. Switch
from UpdateDecl to an actual update record when this happens due to implicitly
defining a special member function and unify this code path and the one for
instantiating a function definition.
llvm-svn: 215132
they're somehow missing a body. Looks like this was left behind when the loop
was generalized, and it's not been problematic before because without modules,
a used, implicit special member function declaration must be a definition.
This was resulting in us trying to emit a constructor declaration rather than
a definition, and producing a constructor missing its member initializers.
llvm-svn: 214473
of a function has a resolved exception specification, then all declarations of
the function do.
We should probably improve the AST representation to make this implicit (perhaps
only store the exception specification on the canonical declaration), but this
fixes things for now.
The testcase for this (which used to assert) also exposes the actual bug I was
trying to reduce here: we sometimes fail to emit the body of an imported
special member function definition. Fix for that to follow.
llvm-svn: 214458
Allow the tests to succeed with tne signext (or other) attribute is present. The attributes
show up for Power, but not for x86*, so need to be appropriately wildcarded.
llvm-svn: 210050
specialization from a module. (This can also happen for function template
specializations in PCHs if they're instantiated eagerly, because they're
constexpr or have a deduced return type.)
llvm-svn: 204547