Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
This implements PPCTargetLowering::getTgtMemIntrinsic for Altivec load/store
intrinsics. As with the construction of the MachineMemOperands for the
intrinsic calls used for unaligned load/store lowering, the only slight
complication is that we need to represent a larger memory range than the
loaded/stored value-type size (because the address is rounded down to an
aligned address, and we need to conservatively represent the entire possible
range of the actual access). This required adding an extra size field to
TargetLowering::IntrinsicInfo, and this was done in a way that required no
modifications to other targets (the size defaults to the store size of the
provided memory data type).
This fixes test/CodeGen/PowerPC/unal-altivec-wint.ll (so it can be un-XFAILed).
llvm-svn: 215512
Unfortunately, our use of the SDNode class hierarchy for INTRINSIC_W_CHAIN and
INTRINSIC_VOID nodes is somewhat broken right now. These nodes sometimes are
used for memory intrinsics (those with MachineMemOperands), and sometimes not.
When not, the nodes are not created as instances of MemIntrinsicSDNode, but
rather created as some other subclass of SDNode using DAG::getNode. When they
are memory intrinsics, they are created using DAG::getMemIntrinsicNode as
instances of MemIntrinsicSDNode. MemIntrinsicSDNode is a subclass of
MemSDNode, but prior to r214452, we had a non-self-consistent setup whereby
MemIntrinsicSDNode::classof on INTRINSIC_W_CHAIN and INTRINSIC_VOID would
return true but MemSDNode::classof on INTRINSIC_W_CHAIN and INTRINSIC_VOID
would return false. In r214452, MemSDNode::classof was changed to return true
for INTRINSIC_W_CHAIN and INTRINSIC_VOID, which is now self-consistent. The
problem is that neither the pre-r214452 logic and the post-r214452 logic are
really right. The truth is that not all INTRINSIC_W_CHAIN and INTRINSIC_VOID
nodes are instances of MemIntrinsicSDNode (or MemSDNode for that matter), and
the return value from classof needs to reflect that. This was broken before
r214452 (because MemIntrinsicSDNode::classof always returned true), and was
broken afterward (because MemSDNode::classof also always returned true), and
will now be correct.
The minimal solution is to grab one of the SubclassData bits (there is one left
for MemIntrinsicSDNode nodes) and use it to store whether or not a particular
INTRINSIC_W_CHAIN or INTRINSIC_VOID is really an instance of
MemIntrinsicSDNode or not. Doing this allows both MemIntrinsicSDNode::classof
and MemSDNode::classof to return the correct answer for the underlying object
for both the memory-intrinsic and non-memory-intrinsic cases.
This fixes the problem that r214452 created in the SelectionDAGDumper (thanks
to Matt Arsenault for pointing it out).
Because PowerPC does not implement getTgtMemIntrinsic, this change breaks
test/CodeGen/PowerPC/unal-altivec-wint.ll. I've XFAILed it for now, and will
fix it in a follow-up commit.
llvm-svn: 215511
When generating unaligned vector loads, we need to search for other loads or
stores nearby offset by one vector width. If we find one, then we know that we
can safely generate another aligned load at that address. Otherwise, we must
generate the next load using an offset of the vector width minus one byte (so
we don't read off the end of the allocation if the base unaligned address
happened to be aligned at runtime). We had previously done this using only
other vector loads and stores, but did not consider the PowerPC-specific vector
load/store intrinsics. Now we'll also consider vector intrinsics. By itself,
this change is a feature enhancement, but is a necessary step toward fixing the
underlying problem behind PR19991.
llvm-svn: 214469