use load/store fragments defined in TargetSelectionDAG.td in place of them.
Unaligned loads/stores are either expanded or lowered to target-specific nodes,
so instruction selection should see only aligned load/store nodes.
No changes in functionality.
llvm-svn: 163960
single-precision load and store.
Also avoid selecting LUXC1 and SUXC1 instructions during isel. It is incorrect
to map unaligned floating point load/store nodes to these instructions.
llvm-svn: 161063
The long branch pass (fixed in r160601) no longer uses the global base register
to compute addresses of branch destinations, so it is not necessary to reserve
a slot on the stack.
llvm-svn: 160703
pointer register.
This is the first of the series of patches which clean up the way global pointer
register is used. The patches will make the following improvements:
- Make $gp an allocatable temporary register rather than reserving it.
- Use a virtual register as the global pointer register and let the register
allocator decide which register to assign to it or whether spill/reloads are
needed.
- Make sure $gp is valid at the entry of a called function, which is necessary
for functions using lazy binding.
- Remove the need for emitting .cprestore and .cpload directives.
llvm-svn: 156671
For example, the first instruction in the code below can be eliminated if the
use of $vr0 is replaced with $zero:
addiu $vr0, $zero, 0
add $vr2, $vr1, $vr0
add $vr2, $vr1, $zero
llvm-svn: 152280
and stores was added.
- SelectAddr should return false if Parent is an unaligned f32 load or store.
- Only aligned load and store nodes should be matched to select reg+imm
floating point instructions.
- MIPS does not have support for f64 unaligned load or store instructions.
llvm-svn: 151843
reserving a physical register ($gp or $28) for that purpose.
This will completely eliminate loads that restore the value of $gp after every
function call, if the register allocator assigns a callee-saved register, or
eliminate unnecessary loads if it assigns a temporary register.
example:
.cpload $25 // set $gp.
...
.cprestore 16 // store $gp to stack slot 16($sp).
...
jalr $25 // function call. clobbers $gp.
lw $gp, 16($sp) // not emitted if callee-saved reg is chosen.
...
lw $2, 4($gp)
...
jalr $25 // function call.
lw $gp, 16($sp) // not emitted if $gp is not live after this instruction.
...
llvm-svn: 151402
This change reduces the number of instructions generated.
For example,
(load (add (sub $n0, $n1), (MipsLo got(s))))
results in the following sequence of instructions:
1. sub $n2, $n0, $n1
2. lw got(s)($n2)
Previously, three instructions were needed.
1. sub $n2, $n0, $n1
2. addiu $n3, $n2, got(s)
3. lw 0($n3)
llvm-svn: 146888
- Modify lowering of global TLS address nodes.
- Modify isel of ThreadPointer.
- Wrap target global TLS address nodes that are operands of loads with WrapperPIC.
- Remove Mips-specific DAG nodes TlsGd, TprelHi and TprelLo, which can be
substituted with other existing nodes.
llvm-svn: 146175
Mips1 does not support double precision loads or stores, therefore two single
precision loads or stores must be used in place of these instructions. This
patch treats double precision loads and stores as if they are legal
instructions until MCInstLowering, instead of generating the single precision
instructions during instruction selection or Prolog/Epilog code insertion.
Without the changes made in this patch, llc produces code that has the same
problem described in r137484 or bails out when
MipsInstrInfo::storeRegToStackSlot or loadRegFromStackSlot is called before
register allocation.
llvm-svn: 137711
integer register to a floating point register. It is not valid to interpret
the value of a floating pointer register as part of a double precision
floating point value after a single precision floating point computational
or move instruction stores its result to the register.
- In the test case, the following code is generated before this patch is
applied:
mtc1 $zero, $f2 ; unformatted copy to $f2
mov.s $f0, $f2 ; $f0 is in single format
sdc1 $f12, 0($sp)
mov.s $f1, $f2 ; $f1 is in single format
c.eq.d $f12, $f0 ; $f0 cannot be interpreted as double
- The following code is generated after this patch is applied:
mtc1 $zero, $f0 ; unformatted copy to $f0
mtc1 $zero, $f1 ; unformatted copy to $f1
c.eq.d $f12, $f0 ; $f0 can be interpreted as double
Bhanu Chetlapalli and Chris Dearman at MIPS technologies reported this bug and
provided the test case.
llvm-svn: 137484