The RISC-V assembler needs the target ABI because it defines a flag of the ELF
file, as described in [1].
Make clang (the driver) to pass the target ABI to -cc1as in exactly the same
way it does for -cc1.
Currently -cc1as knows about -target-abi but is not handling it. Handle it and
pass it to the MC layer via MCTargetOptions.
[1] https://github.com/riscv/riscv-elf-psabi-doc/blob/master/riscv-elf.md#file-header
Differential Revision: https://reviews.llvm.org/D59298
llvm-svn: 356981
r356634 didn't fix all the problems caused by r356222 - even though simple
constructors involving transparent init-list expressions are now evaluated
precisely, many more complicated constructors aren't, for other reasons.
The attached test case is an example of a constructor that will never be
evaluated precisely - simply because there isn't a constructor there (instead,
the program invokes run-time undefined behavior by returning without a return
statement that should have constructed the return value).
Fix another part of the problem for such situations: evaluate transparent
init-list expressions transparently, so that to avoid creating ill-formed
"transparent" nonloc::CompoundVals.
Differential Revision: https://reviews.llvm.org/D59622
llvm-svn: 356969
The intention is to add metadata to direct call sites of functions
marked with __declspec(allocator), which will ultimately result in some
S_HEAPALLOCSITE debug info records when emitting codeview.
This is a piece of PR38491
llvm-svn: 356964
Bail-out of CheckArrayAccess when the types of the base expression before
and after eventual casts are dependent. We will get another chance to check
for array bounds during instantiation. Fixes PR41087.
Differential Revision: https://reviews.llvm.org/D59776
Reviewed By: efriedma
llvm-svn: 356957
We can't (don't want to) honor the same set of "-fuse-ld" flags with
WebAssembly since the ELF linkers (ld.lld, ld.gnu, etc) don't work with
wasm object files.
Instead we implement our own linker finding logic, similar or other
non-ELF platforms like MSVC.
We've had a few issues with CLANG_DEFAULT_LINKER overriding the
WebAssembly linker which doesn't make sense since there is no generic
linker that can handle WebAssembly today.
Differential Revision: https://reviews.llvm.org/D59743
llvm-svn: 356953
Summary:
SExprBuilder::translateDeclRefExpr was only looking at FunctionDecl and not also looking at ObjCMethodDecl. It should consider both because the attributes can be used on Objective-C as well.
<rdar://problem/48941331>
Reviewers: dexonsmith, erik.pilkington
Subscribers: jkorous, jdoerfert, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59523
llvm-svn: 356940
For backwards compatibility we allow alternative spelling of address
spaces - 'private', 'local', 'global', 'constant', 'generic'.
In order to accept 'private' correctly, parsing has been changed to
understand different use cases - access specifier vs address space.
Fixes PR40707 and PR41011!
Differential Revision: https://reviews.llvm.org/D59603
llvm-svn: 356888
Summary:
https://reviews.llvm.org/D59076 added a new coroutine error that
prevented users from using 'co_await' or 'co_yield' within a exception
handler. However, it was reverted in https://reviews.llvm.org/rC356774
because it caused a regression in nested scopes in C++ catch statements,
as documented by https://bugs.llvm.org/show_bug.cgi?id=41171.
The issue was due to an incorrect use of a `clang::ParseScope`. To fix:
1. Add a regression test for catch statement parsing that mimics the bug
report from https://bugs.llvm.org/show_bug.cgi?id=41171.
2. Re-apply the coroutines error patch from
https://reviews.llvm.org/D59076, but this time with the correct
ParseScope behavior.
Reviewers: GorNishanov, tks2103, rsmith, riccibruno, jbulow
Reviewed By: riccibruno
Subscribers: EricWF, jdoerfert, lewissbaker, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59752
llvm-svn: 356865
Summary:
These are all implemented by icc as well.
I made bit_scan_forward/reverse forward to the __bsfd/__bsrq since we also have
__bsfq/__bsrq.
Note, when lzcnt is enabled the bsr intrinsics generates lzcnt+xor instead of bsr.
Reviewers: RKSimon, spatel
Subscribers: cfe-commits, llvm-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59682
llvm-svn: 356848
Summary:
This eliminates a linker error the user might otherwise see about how
using the 'atomics' feature requires --shared-memory.
Reviewers: sbc100, aheejin
Subscribers: dschuff, jgravelle-google, sunfish, jfb, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59721
llvm-svn: 356817
Just as as llvm IR supports explicitly specifying numeric value ids
for instructions, and emits them by default in textual output, now do
the same for blocks.
This is a slightly incompatible change in the textual IR format.
Previously, llvm would parse numeric labels as string names. E.g.
define void @f() {
br label %"55"
55:
ret void
}
defined a label *named* "55", even without needing to be quoted, while
the reference required quoting. Now, if you intend a block label which
looks like a value number to be a name, you must quote it in the
definition too (e.g. `"55":`).
Previously, llvm would print nameless blocks only as a comment, and
would omit it if there was no predecessor. This could cause confusion
for readers of the IR, just as unnamed instructions did prior to the
addition of "%5 = " syntax, back in 2008 (PR2480).
Now, it will always print a label for an unnamed block, with the
exception of the entry block. (IMO it may be better to print it for
the entry-block as well. However, that requires updating many more
tests.)
Thus, the following is supported, and is the canonical printing:
define i32 @f(i32, i32) {
%3 = add i32 %0, %1
br label %4
4:
ret i32 %3
}
New test cases covering this behavior are added, and other tests
updated as required.
Differential Revision: https://reviews.llvm.org/D58548
llvm-svn: 356789
dynamic_allocators.
According to the OpenMP 5.0, 2.11.3 allocate Directive, Restrictions,
allocate directives that appear in a target region must specify an
allocator clause unless a requires directive with the dynamic_allocators
clause is present in the same compilation unit. Patch adds a check for a
presence of the requires directive with the dynamic_allocators clause.
llvm-svn: 356758
clause in target region.
According to the OpenMP 5.0, 2.11.3 allocate Directive, Restrictions,
allocate directives that appear in a target region must specify an
allocator clause unless a requires directive with the dynamic_allocators
clause is present in the same compilation unit.
llvm-svn: 356752
This is the result of discussions on the list about how to deal with intrinsics
which require codegen to disambiguate them via only the integer/fp overloads.
It causes problems for GlobalISel as some of that information is lost during
translation, while with other operations like IR instructions the information is
encoded into the instruction opcode.
This patch changes clang to emit the new faddp intrinsic if the vector operands
to the builtin have FP element types. LLVM IR AutoUpgrade has been taught to
upgrade existing calls to aarch64.neon.addp with fp vector arguments, and
we remove the workarounds introduced for GlobalISel in r355865.
This is a more permanent solution to PR40968.
Differential Revision: https://reviews.llvm.org/D59655
llvm-svn: 356722
in the include path.
Instead of making the incorrect claim that the included file has an
absolute path, describe the actual problem: the including file was found
either by absolute path, or relative to such a file, or relative to the
primary source file.
llvm-svn: 356712
Use the new cx8 feature flag that was added to the backend to represent support for cmpxchg8b. Use this flag to set the MaxAtomicInlineWidth.
This also assumes all the cmpxchg instructions are enabled for CK_Generic which is what cc1 defaults to when nothing is specified.
Differential Revision: https://reviews.llvm.org/D59566
llvm-svn: 356709
-malign-double is currently only implemented in the -cc1 interface. But its declared in Options.td so it is a driver option too. But you try to use it with the driver you'll get a message about the option being unused.
This patch teaches the driver to pass the option through to cc1 so it won't be unused. The Options.td says the option is x86 only but I didn't see any x86 specific code in its impementation in cc1 so not sure if the documentation is wrong or if I should only pass this option through the driver on x86 targets.
Differential Revision: https://reviews.llvm.org/D59624
llvm-svn: 356706
with notail on x86-64.
On x86-64, the epilogue code inserted before the tail jump blocks the
autoreleased return optimization.
rdar://problem/38675807
Differential Revision: https://reviews.llvm.org/D59656
llvm-svn: 356705
For the global variables the allocate directive must specify only the
predefined allocator. This allocator must be translated into the correct
form of the address space for the targets that support different address
spaces.
llvm-svn: 356702
gcc and icc both implement popcntd and popcntq which we did not. gcc doesn't seem to require a feature flag for the _popcnt32/_popcnt64 spelling and will use a libcall if its not supported.
Differential Revision: https://reviews.llvm.org/D59567
llvm-svn: 356689
After https://reviews.llvm.org/rL355317 we noticed that quite a decent
amount of code redeclares builtins (memcpy in particular, I believe
reduced from an MSVC header) with a calling convention specified.
This gets particularly troublesome when the user specifies a new
'default' calling convention on the command line.
When looking to add a diagnostic for this case, it was noticed that we
had 3 other diagnostics that differed only slightly. This patch ALSO
unifies those under a 'select'. Unfortunately, the order of words in
ONE of these diagnostics was reversed ("'thiscall' calling convention"
vs "calling convention 'thiscall'"), so this patch also standardizes on
the former.
Differential Revision: https://reviews.llvm.org/D59560
Change-Id: I79f99fe7c2301640755ffdd774b46eb44526bb22
llvm-svn: 356663
When searching for construction contexts, i.e. figuring out which statements
define the object that is constructed by each construct-expression, ignore
transparent init-list expressions because they don't add anything to the
context. This allows the Static Analyzer to model construction, destruction,
materialization, lifetime extension correctly in more cases. Also fixes
a crash caused by incorrectly evaluating initial values of variables
initialized with such expressions.
Differential Revision: https://reviews.llvm.org/D59573
llvm-svn: 356634
gcc has these intrinsics in ia32intrin.h as well. And icc implements them
though they aren't documented in the Intel Intrinsics Guide.
Differential Revision: https://reviews.llvm.org/D59533
llvm-svn: 356609
allocators.
It is better to deduce omp_allocator_handle_t type from the predefined
allocators, because omp.h header might not define it explicitly. Plus,
it allows to identify the predefined allocators correctly when trying to
build the allcoator for the global variables.
llvm-svn: 356607
Before this commit, we emit unavailable errors for calls to functions during
overload resolution, and for references to all other declarations in
DiagnoseUseOfDecl. The early checks during overload resolution aren't as good as
the DiagnoseAvailabilityOfDecl based checks, as they error on the code from
PR40991. This commit fixes this by removing the early checking.
llvm.org/PR40991
rdar://48564179
Differential revision: https://reviews.llvm.org/D59394
llvm-svn: 356599
This diff previously exposed a bug in LLVM's IRLinker, breaking
buildbots that tried to self-host LLVM with monolithic LTO.
The bug is now in LLVM by D59552
Original commit message:
As PR17480 describes, clang does not support the used attribute
for member functions of class templates. This means that if the member
function is not used, its definition is never instantiated. This patch
changes clang to emit the definition if it has the used attribute.
Test Plan: Added a testcase
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D56928
llvm-svn: 356598
Fails on MSVC buildbot (but not locally).
Not important as it is 'testing' something that isn't supported yet anyway:
https://bugs.llvm.org/show_bug.cgi?id=41022
llvm-svn: 356577
Summary:
[OpenCL] Generate 'unroll.enable' metadata for __attribute__((opencl_unroll_hint))
For both !{!"llvm.loop.unroll.enable"} and !{!"llvm.loop.unroll.full"} the unroller
will try to fully unroll a loop unless the trip count is not known at compile time.
In that case for '.full' metadata no unrolling will be processed, while for '.enable'
the loop will be partially unrolled with a heuristically chosen unroll factor.
See: docs/LanguageExtensions.rst
From https://www.khronos.org/registry/OpenCL/sdk/2.0/docs/man/xhtml/attributes-loopUnroll.html
__attribute__((opencl_unroll_hint))
for (int i=0; i<2; i++)
{
...
}
In the example above, the compiler will determine how much to unroll the loop.
Before the patch for __attribute__((opencl_unroll_hint)) was generated metadata
!{!"llvm.loop.unroll.full"}, which limits ability of loop unroller to decide, how
much to unroll the loop.
Reviewers: Anastasia, yaxunl
Reviewed By: Anastasia
Subscribers: zzheng, dmgreen, jdoerfert, cfe-commits, asavonic, AlexeySotkin
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59493
llvm-svn: 356571
Summary:
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf, page 3:
```
structured block
For C/C++, an executable statement, possibly compound, with a single entry at the
top and a single exit at the bottom, or an OpenMP construct.
COMMENT: See Section 2.1 on page 38 for restrictions on structured
blocks.
```
```
2.1 Directive Format
Some executable directives include a structured block. A structured block:
• may contain infinite loops where the point of exit is never reached;
• may halt due to an IEEE exception;
• may contain calls to exit(), _Exit(), quick_exit(), abort() or functions with a
_Noreturn specifier (in C) or a noreturn attribute (in C/C++);
• may be an expression statement, iteration statement, selection statement, or try block, provided
that the corresponding compound statement obtained by enclosing it in { and } would be a
structured block; and
Restrictions
Restrictions to structured blocks are as follows:
• Entry to a structured block must not be the result of a branch.
• The point of exit cannot be a branch out of the structured block.
C / C++
• The point of entry to a structured block must not be a call to setjmp().
• longjmp() and throw() must not violate the entry/exit criteria.
```
Of particular note here is the fact that OpenMP structured blocks are as-if `noexcept`,
in the same sense as with the normal `noexcept` functions in C++.
I.e. if throw happens, and it attempts to travel out of the `noexcept` function
(here: out of the current structured-block), then the program terminates.
Now, one of course can say that since it is explicitly prohibited by the Specification,
then any and all programs that violate this Specification contain undefined behavior,
and are unspecified, and thus no one should care about them. Just don't write broken code /s
But i'm not sure this is a reasonable approach.
I have personally had oss-fuzz issues of this origin - exception thrown inside
of an OpenMP structured-block that is not caught, thus causing program termination.
This issue isn't all that hard to catch, it's not any particularly different from
diagnosing the same situation with the normal `noexcept` function.
Now, clang static analyzer does not presently model exceptions.
But clang-tidy has a simplisic [[ https://clang.llvm.org/extra/clang-tidy/checks/bugprone-exception-escape.html | bugprone-exception-escape ]] check,
and it is even refactored as a `ExceptionAnalyzer` class for reuse.
So it would be trivial to use that analyzer to check for
exceptions escaping out of OpenMP structured blocks. (D59466)
All that sounds too great to be true. Indeed, there is a caveat.
Presently, it's practically impossible to do. To check a OpenMP structured block
you need to somehow 'get' the OpenMP structured block, and you can't because
it's simply not modelled in AST. `CapturedStmt`/`CapturedDecl` is not it's representation.
Now, it is of course possible to write e.g. some AST matcher that would e.g.
match every OpenMP executable directive, and then return the whatever `Stmt` is
the structured block of said executable directive, if any.
But i said //practically//. This isn't practical for the following reasons:
1. This **will** bitrot. That matcher will need to be kept up-to-date,
and refreshed with every new OpenMP spec version.
2. Every single piece of code that would want that knowledge would need to
have such matcher. Well, okay, if it is an AST matcher, it could be shared.
But then you still have `RecursiveASTVisitor` and friends.
`2 > 1`, so now you have code duplication.
So it would be reasonable (and is fully within clang AST spirit) to not
force every single consumer to do that work, but instead store that knowledge
in the correct, and appropriate place - AST, class structure.
Now, there is another hoop we need to get through.
It isn't fully obvious //how// to model this.
The best solution would of course be to simply add a `OMPStructuredBlock` transparent
node. It would be optimal, it would give us two properties:
* Given this `OMPExecutableDirective`, what's it OpenMP structured block?
* It is trivial to check whether the `Stmt*` is a OpenMP structured block (`isa<OMPStructuredBlock>(ptr)`)
But OpenMP structured block isn't **necessarily** the first, direct child of `OMP*Directive`.
(even ignoring the clang's `CapturedStmt`/`CapturedDecl` that were inserted inbetween).
So i'm not sure whether or not we could re-create AST statements after they were already created?
There would be other costs to a new AST node: https://bugs.llvm.org/show_bug.cgi?id=40563#c12
```
1. You will need to break the representation of loops. The body should be replaced by the "structured block" entity.
2. You will need to support serialization/deserialization.
3. You will need to support template instantiation.
4. You will need to support codegen and take this new construct to account in each OpenMP directive.
```
Instead, there **is** an functionally-equivalent, alternative solution, consisting of two parts.
Part 1:
* Add a member function `isStandaloneDirective()` to the `OMPExecutableDirective` class,
that will tell whether this directive is stand-alone or not, as per the spec.
We need it because we can't just check for the existance of associated statements,
see code comment.
* Add a member function `getStructuredBlock()` to the OMPExecutableDirective` class itself,
that assert that this is not a stand-alone directive, and either return the correct loop body
if this is a loop-like directive, or the captured statement.
This way, given an `OMPExecutableDirective`, we can get it's structured block.
Also, since the knowledge is ingrained into the clang OpenMP implementation,
it will not cause any duplication, and //hopefully// won't bitrot.
Great we achieved 1 of 2 properties of `OMPStructuredBlock` approach.
Thus, there is a second part needed:
* How can we check whether a given `Stmt*` is `OMPStructuredBlock`?
Well, we can't really, in general. I can see this workaround:
```
class FunctionASTVisitor : public RecursiveASTVisitor<FunctionASTVisitor> {
using Base = RecursiveASTVisitor<FunctionASTVisitor>;
public:
bool VisitOMPExecDir(OMPExecDir *D) {
OmpStructuredStmts.emplace_back(D.getStructuredStmt());
}
bool VisitSOMETHINGELSE(???) {
if(InOmpStructuredStmt)
HI!
}
bool TraverseStmt(Stmt *Node) {
if (!Node)
return Base::TraverseStmt(Node);
if (OmpStructuredStmts.back() == Node)
++InOmpStructuredStmt;
Base::TraverseStmt(Node);
if (OmpStructuredStmts.back() == Node) {
OmpStructuredStmts.pop_back();
--InOmpStructuredStmt;
}
return true;
}
std::vector<Stmt*> OmpStructuredStmts;
int InOmpStructuredStmt = 0;
};
```
But i really don't see using it in practice.
It's just too intrusive; and again, requires knowledge duplication.
.. but no. The solution lies right on the ground.
Why don't we simply store this `i'm a openmp structured block` in the bitfield of the `Stmt` itself?
This does not appear to have any impact on the memory footprint of the clang AST,
since it's just a single extra bit in the bitfield. At least the static assertions don't fail.
Thus, indeed, we can achieve both of the properties without a new AST node.
We can cheaply set that bit right in sema, at the end of `Sema::ActOnOpenMPExecutableDirective()`,
by just calling the `getStructuredBlock()` that we just added.
Test coverage that demonstrates all this has been added.
This isn't as great with serialization though. Most of it does not use abbrevs,
so we do end up paying the full price (4 bytes?) instead of a single bit.
That price, of course, can be reclaimed by using abbrevs.
In fact, i suspect that //might// not just reclaim these bytes, but pack these PCH significantly.
I'm not seeing a third solution. If there is one, it would be interesting to hear about it.
("just don't write code that would require `isa<OMPStructuredBlock>(ptr)`" is not a solution.)
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=40563 | PR40563 ]].
Reviewers: ABataev, rjmccall, hfinkel, rsmith, riccibruno, gribozavr
Reviewed By: ABataev, gribozavr
Subscribers: mgorny, aaron.ballman, steveire, guansong, jfb, jdoerfert, cfe-commits
Tags: #clang, #openmp
Differential Revision: https://reviews.llvm.org/D59214
llvm-svn: 356570
Summary:
Split off from D59214.
Not a fully exhaustive test coverage, but better than what there currently is.
Differential Revision: https://reviews.llvm.org/D59306
llvm-svn: 356569
Use the new kind for both angled header-name tokens and for
double-quoted header-name tokens.
This is in preparation for C++20's context-sensitive header-name token
formation rules.
llvm-svn: 356530
Summary: This test is failing after r356499 (verified with `ninja check-clang-codegen`). Update the register selection used in the test from x0 to x8.
Reviewers: arsenm, MatzeB, efriedma
Reviewed By: efriedma
Subscribers: efriedma, wdng, javed.absar, kristof.beyls, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D59557
llvm-svn: 356517
The attribute pass_dynamic_object_size(n) behaves exactly like
pass_object_size(n), but instead of evaluating __builtin_object_size on calls,
it evaluates __builtin_dynamic_object_size, which has the potential to produce
runtime code when the object size can't be determined statically.
Differential revision: https://reviews.llvm.org/D58757
llvm-svn: 356515
If the allocator was specified for the variable and next one is found
with the different allocator, the warning is emitted, and the allocator
is ignored.
llvm-svn: 356513
"clang++ hello.cc --rtlib=compiler-rt"
now can works without specifying additional unwind or exception
handling libraries.
This reworked version of the feature no longer modifies today's default
unwind library for compiler-rt: which is nothing. Rather, a user
can specify -DCLANG_DEFAULT_UNWINDLIB=libunwind when configuring
the compiler.
This should address the issues from the previous version.
Update tests for new --unwindlib semantics.
Differential Revision: https://reviews.llvm.org/D59109
llvm-svn: 356508
According to OpenMP, 2.11.3 allocate Directive, Restrictions, C / C++,
if a list item has a static storage type, the allocator expression in
the allocator clause must be a constant expression that evaluates to
one of the predefined memory allocator values. Added check for this
restriction.
llvm-svn: 356496