Previously, I thought this was a Windows failure. Then I realized it failed on
every bot that used the verifier. This makes it use the verifier always, and
adds that pass to the pipeline checks so that it's consistent across all bots.
llvm-svn: 338272
It seems like the pass pipeline on Windows is slightly different than on Linux
and macOS. As a result, the arm64-opt-remarks-lazy-bfi test has been failing.
This switches a CHECK-NEXT to a CHECK-DAG to try and get this running properly
again.
It'd be nice to switch it back to a CHECK-NEXT if possible, but the CHECK-NEXT
lines following the line we care about (the optimization remark emitter)
do a pretty good job of enforcing the ordering we want.
Hopefully this works, since I don't have a Windows machine. ;)
Example failure: http://lab.llvm.org:8011/builders/llvm-clang-x86_64-expensive-checks-win/builds/11295
llvm-svn: 338267
Fixed the ASAN failure from before in r338148, so recommiting.
This patch enables the MachineOutliner by default in AArch64 under -Oz.
The MachineOutliner offers around a 4.5% improvement on the current -Oz code
size improvements.
We have done work into improving the debuggability of outlined code, so that
users of -Oz won't be surprised by the optimization. We have also been executing
the LLVM test suite and common external tests such as the SPEC suites
continuously with no issue. The outliner has a low compile-time overhead of
roughly 1%. At this point, the outliner would be a really good addition to the
-Oz pass pipeline!
llvm-svn: 338160
This patch enables the MachineOutliner by default in AArch64 under -Oz.
The MachineOutliner offers around a 4.5% improvement on the current -Oz code
size improvements.
We have done work into improving the debuggability of outlined code, so that
users of -Oz won't be surprised by the optimization. We have also been executing
the LLVM test suite and common external tests such as the SPEC suites
continuously with no issue. The outliner has a low compile-time overhead of
roughly 1%. At this point, the outliner would be a really good addition to the
-Oz pass pipeline!
llvm-svn: 338133
Summary:
Currently MachineLoopInfo is used in only two places:
1) for computing IsBasicBlockInsideInnermostLoop field of MCCodePaddingContext, and it is never used.
2) in emitBasicBlockLoopComments, which is called only if `isVerbose()` is true.
Despite that, we currently have a dependency on MachineLoopInfo, which makes
pass manager to compute it and MachineDominator Tree. This patch removes the
use (1) and makes the use (2) lazy, thus avoiding some redundant
recomputations.
Reviewers: opaparo, gadi.haber, rafael, craig.topper, zvi
Subscribers: rengolin, javed.absar, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D44812
llvm-svn: 329542
Infrastructure designed for padding code with nop instructions in key places such that preformance improvement will be achieved.
The infrastructure is implemented such that the padding is done in the Assembler after the layout is done and all IPs and alignments are known.
This patch by itself in a NFC. Future patches will make use of this infrastructure to implement required policies for code padding.
Reviewers:
aaboud
zvi
craig.topper
gadi.haber
Differential revision: https://reviews.llvm.org/D34393
Change-Id: I92110d0c0a757080a8405636914a93ef6f8ad00e
llvm-svn: 316413