fixes: Use a separate register, instead of SP, as the
calling-convention resource, to avoid spurious conflicts with
actual uses of SP. Also, fix unscheduling of calling sequences,
which can be triggered by pseudo-two-address dependencies.
llvm-svn: 143206
it fixes the dragonegg self-host (it looks like gcc is miscompiled).
Original commit messages:
Eliminate LegalizeOps' LegalizedNodes map and have it just call RAUW
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
Delete #if 0 code accidentally left in.
llvm-svn: 143188
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
llvm-svn: 143177
Optimize trivial branches in CodeGenPrepare, which often get created from the
lowering of objectsize intrinsics. Unfortunately, a number of tests were relying
on llc not optimizing trivial branches, so I had to add an option to allow them
to continue to test what they originally tested.
This fixes <rdar://problem/8785296> and <rdar://problem/9112893>.
llvm-svn: 127498
lowering of objectsize intrinsics. Unfortunately, a number of tests were relying
on llc not optimizing trivial branches, so I had to add an option to allow them
to continue to test what they originally tested.
This fixes <rdar://problem/8785296> and <rdar://problem/9112893>.
llvm-svn: 127459
There was a previous implementation with patterns that would
have matched e.g.
shl <v4i32> <i32>,
but this is not valid LLVM IR so they never were selected.
llvm-svn: 126998
support for the case where alignment<value size.
These cases were silently miscompiled before this patch.
Now they are overly verbose -especially storing is- and
any front-end should still avoid misaligned memory
accesses as much as possible. The bit juggling algorithm
added here probably has some room for improvement still.
llvm-svn: 118889
The SPU ABI does not mention v64, and all examples
in C suggest v128 are treated similarily to arrays,
we use array alignment for v64 too. This makes the
alignment of e.g. [2 x <2 x i32>] behave "intuitively"
and similar to as if the elements were e.g. i32s.
This also makes an "unaligned store" test to be
aligned, with different (but functionally equivalent)
code generated.
llvm-svn: 117360
The old algorithm inserted a 'rotqmbyi' instruction which was
both redundant and wrong - it made shufb select bytes from the
wrong end of the input quad.
llvm-svn: 116701
This cleans up after the mess r108567 left in the CellSPU backend.
ORCvt-instruction were used to reinterpret registers, and the ORs were then
removed by isMoveInstr(). This patch now removes 350 instrucions of format:
or $3, $3, $3
(from the 52 testcases in CodeGen/CellSPU). One case of a nonexistant or is
checked for.
Some moves of the form 'ori $., $., 0' and 'ai $., $., 0' still remain.
llvm-svn: 114074
The "half vectors" are now widened to full size by the legalizer.
The only exception is in parameter passing, where half vectors are
expanded. This causes changes to some dejagnu tests.
llvm-svn: 111360
such registers in SPU, this support boils down to "emulating"
them by duplicating instructions on the general purpose registers.
This adds the most basic operations on v2i32: passing parameters,
addition, subtraction, multiplication and a few others.
llvm-svn: 110035