Summary:
Before this change, LLVM would always describe locals on the stack as
being relative to some specific register, RSP, ESP, EBP, ESI, etc.
Variables in stack memory are pretty common, so there is a special
S_DEFRANGE_FRAMEPOINTER_REL symbol for them. This change uses it to
reduce the size of our debug info.
On top of the size savings, there are cases on 32-bit x86 where local
variables are addressed from ESP, but ESP changes across the function.
Unlike in DWARF, there is no FPO data to describe the stack adjustments
made to push arguments onto the stack and pop them off after the call,
which makes it hard for the debugger to find the local variables in
frames further up the stack.
To handle this, CodeView has a special VFRAME register, which
corresponds to the $T0 variable set by our FPO data in 32-bit. Offsets
to local variables are instead relative to this value.
This is part of PR38857.
Reviewers: hans, zturner, javed.absar
Subscribers: aprantl, hiraditya, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D52217
llvm-svn: 343543
These work a little differently because they are actually in
the globals stream and are treated as symbol records, even though
DIA presents them as types. So this also adds the necessary
infrastructure to cache records that live somewhere other than
the TPI stream as well.
llvm-svn: 343507
We didn't properly detect when a pointer was a member
pointer, and when that was the case we were not
properly returning class parent info. This caused
member pointers to render incorrectly in pretty mode.
However, we didn't even have pretty tests for pointers
in native mode, so those are also added now to ensure
this.
llvm-svn: 343393
- Add fix so that all code paths that create DWARFContext
with an ObjectFile initialise the target architecture in the context
- Add an assert that the Arch is known in the Dwarf CallFrameString method
llvm-svn: 343317
This caused the DebugInfo/Sparc/gnu-window-save.ll test to fail.
> Functions that have signed return addresses need additional dwarf support:
> - After signing the LR, and before authenticating it, the LR register is in a
> state the is unusable by a debugger or unwinder
> - To account for this a new directive, .cfi_negate_ra_state, is added
> - This directive says the signed state of the LR register has now changed,
> i.e. unsigned -> signed or signed -> unsigned
> - This directive has the same CFA code as the SPARC directive GNU_window_save
> (0x2d), adding a macro to account for multiply defined codes
> - This patch matches the gcc implementation of this support:
> https://patchwork.ozlabs.org/patch/800271/
>
> Differential Revision: https://reviews.llvm.org/D50136
llvm-svn: 343103
Functions that have signed return addresses need additional dwarf support:
- After signing the LR, and before authenticating it, the LR register is in a
state the is unusable by a debugger or unwinder
- To account for this a new directive, .cfi_negate_ra_state, is added
- This directive says the signed state of the LR register has now changed,
i.e. unsigned -> signed or signed -> unsigned
- This directive has the same CFA code as the SPARC directive GNU_window_save
(0x2d), adding a macro to account for multiply defined codes
- This patch matches the gcc implementation of this support:
https://patchwork.ozlabs.org/patch/800271/
Differential Revision: https://reviews.llvm.org/D50136
llvm-svn: 343089
This allows the native reader to find records of class/struct/
union type and dump them. This behavior is tested by using the
diadump subcommand against golden output produced by actual DIA
SDK on the same PDB file, and again using pretty -native to
confirm that we actually dump the classes. We don't find class
members or anything like that yet, for now it's just the class
itself.
llvm-svn: 342779
This extends the verifier to catch three new errors:
* Missing DW_AT_type attributes for DW_TAG_formal_parameter,
DW_TAG_variable and DW_TAG_array_type.
* Valid references for DW_AT_type pointing to a non-type tag.
Differential revision: https://reviews.llvm.org/D52223
llvm-svn: 342713
Verify that DW_AT_specification and DW_AT_abstract_origin reference a
DIE with a compatible tag.
Differential revision: https://reviews.llvm.org/D38719
llvm-svn: 342712
Some records point to an LF_CLASS, LF_UNION, LF_STRUCTURE, or LF_ENUM
which is a forward reference and doesn't contain complete debug
information. In these cases, we'd like to be able to quickly locate the
full record. The TPI stream stores an array of pre-computed record hash
values, one for each type record. If we pre-process this on startup, we
can build a mapping from hash value -> {list of possible matching type
indices}. Since hashes of full records are only based on the name and or
unique name and not the full record contents, we can then use forward
ref record to compute the hash of what *would* be the full record by
just hashing the name, use this to get the list of possible matches, and
iterate those looking for a match on name or unique name.
llvm-pdbutil is updated to resolve forward references for the purposes
of testing (plus it's just useful).
Differential Revision: https://reviews.llvm.org/D52283
llvm-svn: 342656
It's pretty common for the verifier to dump the relevant DIE when it
finds an issue. This tends to be relatively verbose and error prone
because we have to pass the DIDumpOptions to the DIE's dump method. This
patch adds a helper function to the verifier to make this easier.
llvm-svn: 342526
There were several issues with the previous implementation.
1) There were no tests.
2) We didn't support creating PDBSymbolTypePointer records for
builtin types since those aren't described by LF_POINTER
records.
3) We didn't support a wide enough variety of builtin types even
ignoring pointers.
This patch fixes all of these issues. In order to add tests,
it's helpful to be able to ignore the symbol index id hierarchy
because it makes the golden output from the DIA version not match
our output, so I've extended the dumper to disable dumping of id
fields.
llvm-svn: 342493
Previously we would dump the names of enum types, but not their
enumerator values. This adds support for enumerator values. In
doing so, we have to introduce a general purpose mechanism for
caching symbol indices of field list members. Unlike global
types, FieldList members do not have a TypeIndex. So instead,
we identify them by the pair {TypeIndexOfFieldList, IndexInFieldList}.
llvm-svn: 342415
Previously for cv-qualified types, we would just ignore them
and they would never get printed. Now we can enumerate them
and cache them like any other symbol type.
llvm-svn: 342414
Naively computing the hash after the PDB data has been generated is in practice
as fast as other approaches I tried. I also tried online-computing the hash as
parts of the PDB were written out (https://reviews.llvm.org/D51887; that's also
where all the measuring data is) and computing the hash in parallel
(https://reviews.llvm.org/D51957). This approach here is simplest, without
being slower.
Differential Revision: https://reviews.llvm.org/D51956
llvm-svn: 342333
Eventually we need to be able to support nested types, which don't
have an associated CVType record. To handle this, remove the
CVType from all of the record classes, and instead store the
deserialized record. Then move the deserialization up to the thing
that creates the type. This actually makes error handling better
anyway as we can return an invalid symbol instead of asserting false.
llvm-svn: 342284
r342003 added support for emitting FPO data from the
DEBUG_S_FRAMEDATA subsection of the .debug$S section to the PDB
file. However, that is not the end of the story. FPO can end
up in two different destinations in a PDB, each corresponding to
a different FPO data source.
The case handled by r342003 involves copying data from the
DEBUG_S_FRAMEDATA subsection of the .debug$S section to the
"New FPO" stream in the PDB, which is then referred to by the
DBI stream. The case handled by this patch involves copying
records from the .debug$F section of an object file to the "FPO"
stream (or perhaps more aptly, the "Old FPO" stream) in the PDB
file, which is also referred to by the DBI stream.
The formats are largely similar, and the difference is mostly
only visible in masm generated object files, such as some of the
low-level CRT object files like memcpy. MASM doesn't appear to
support writing the DEBUG_S_FRAMEDATA subsection, and instead
just writes these records to the .debug$F section.
Although clang-cl does not emit a .debug$F section ever, lld still
needs to support it so we have good debugging for CRT functions.
Differential Revision: https://reviews.llvm.org/D51958
llvm-svn: 342080
Eliminating some duplication of rangelist dumping code at the expense of
some version-dependent code in dump and extract routines.
Reviewer: dblaikie, JDevlieghere, vleschuk
Differential revision: https://reviews.llvm.org/D51081
llvm-svn: 342048
Summary:
There are two registers encoded in the S_FRAMEPROC flags: one for locals
and one for parameters. The encoding is described by the
ExpandEncodedBasePointerReg function in cvinfo.h. Two bits are used to
indicate one of four possible values:
0: no register - Used when there are no variables.
1: SP / standard - Variables are stored relative to the standard SP
for the ISA.
2: FP - Variables are addressed relative to the ISA frame
pointer, i.e. EBP on x86. If realignment is required, parameters
use this. If a dynamic alloca is used, locals will be EBP relative.
3: Alternative - Variables are stored relative to some alternative
third callee-saved register. This is required to address highly
aligned locals when there are dynamic stack adjustments. In this
case, both the incoming SP saved in the standard FP and the current
SP are at some dynamic offset from the locals. LLVM uses ESI in
this case, MSVC uses EBX.
Most of the changes in this patch are to pass around the CPU so that we
can decode these into real, named architectural registers.
Subscribers: hiraditya
Differential Revision: https://reviews.llvm.org/D51894
llvm-svn: 341999
Makes the produced pdbs more deterministic; before they'd contain 2 arbitary
bytes where this padding was.
Also reorder initialization to match the order of the fields in the struct (nfc)
llvm-svn: 341945
With the merge of TUs and CUs into a single container, some code that
relied on the CU range having an ordered range of contiguous addresses
(for locating a CU at a given offset) broke. But the units from
debug_info (currently only CUs, but CUs and TUs in DWARFv5) are in a
contiguous sub-range of that container - searching only through that
subrange is still valid & so do that.
llvm-svn: 341889
clang-format was getting confused due to the presence of a macro
invocation that was not terminated by a semicolon. Fixed this by
terminating the macro lines with semicolons and re-ran clang-format
on the file.
llvm-svn: 341864
- Log the reason for a PDB or precompiled-OBJ load failure
- Properly handle out-of-date PDB or precompiled-OBJ signature by displaying a corresponding error
- Slightly change behavior on PDB failure: any subsequent load attempt from another OBJ would result in the same error message being logged
- Slightly change behavior on PDB failure: retry with filename only if previous error was ENOENT ("no such file or directory")
- Tests: a. for native PDB errors; b. cover all the cases above
Differential Revision: https://reviews.llvm.org/D51559
llvm-svn: 341825
They were unintentionally calling DIA directly, which requires
Windows. We need to pass the -native flag, and this then required
fixing up one or two tests.
llvm-svn: 341731