Summary:
The intrinsic operation added multiple type annotations to the llvm intrinsic operations, but only one is needed.
The related tests in llvmir-intrinsics.mlir checked the wrong number and are adjusted as well.
Reviewers: nicolasvasilache, ftynse
Reviewed By: ftynse
Subscribers: merge_guards_bot, ftynse, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73470
Summary:
The tanh lowering from Standard dialect to NVVM and ROCDL was not working.
The conversion pattern are inserted in the lowering files.
The test cases for the lowerings were added in the test files.
Reviewers: nicolasvasilache, ftynse, herhut
Reviewed By: ftynse, herhut
Subscribers: merge_guards_bot, ftynse, jholewinski, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, csigg, arpith-jacob, mgester, lucyrfox, herhut, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73471
Summary:
The dead function elimination pass in toy was a temporary stopgap until we had proper dead function elimination support in MLIR. Now that this functionality is available, this pass is no longer necessary.
Differential Revision: https://reviews.llvm.org/D72483
Summary: This pass deletes all symbols that are found to be unreachable. This is done by computing the set of operations that are known to be live, propagating that liveness to other symbols, and then deleting all symbols that are not within this live set.
Differential Revision: https://reviews.llvm.org/D72482
Summary: This revision refactors the implementation of the symbol use-list functionality to be a bit cleaner, as well as easier to reason about. Aside from code cleanup, this revision updates the user contract to never recurse into operations if they define a symbol table. The current functionality, which does recurse, makes it difficult to examine the uses held by a symbol table itself. Moving forward users may provide a specific region to examine for uses instead.
Differential Revision: https://reviews.llvm.org/D73427
Summary: The new internal representation of operation results now allows for accessing the result types to be more efficient. Changing the API to ArrayRef is more efficient and removes the need to explicitly materialize vectors in several places.
Differential Revision: https://reviews.llvm.org/D73429
Summary: This allows for providing a default "catchall" legality check that is not dependent on specific operations or dialects. For example, this can be useful to check legality based on the specific types of operation operands or results.
Differential Revision: https://reviews.llvm.org/D73379
Summary:
Affine minimum computation will be used in tiling transformation. The
implementation is mostly boilerplate as we already lower the minimum in the
upper bound of an affine loop.
Differential Revision: https://reviews.llvm.org/D73488
Summary:
Implement the handling of llvm::ConstantDataSequential and
llvm::ConstantAggregate for (nested) array and vector types when imporitng LLVM
IR to MLIR. In all cases, the result is a DenseElementsAttr that can be used in
either a `llvm.mlir.global` or a `llvm.mlir.constant`. Nested aggregates are
unpacked recursively until an element or a constant data is found. Nested
arrays with innermost scalar type are represented as DenseElementsAttr of
tensor type. Nested arrays with innermost vector type are represented as
DenseElementsAttr with (multidimensional) vector type.
Constant aggregates of struct type are not yet supported as the LLVM dialect
does not have a well-defined way of modeling struct-type constants.
Differential Revision: https://reviews.llvm.org/D72834
Thus far certain SPIR-V ops have been required to be in spv.module.
While this provides strong verification to catch unexpected errors,
it's quite rigid and makes progressive lowering difficult. Sometimes
we would like to partially lower ops from other dialects, which may
involve creating ops like global variables that should be placed in
other module-like ops. So this commit relaxes the requirement of
such SPIR-V ops' scope to module-like ops. Similarly for function-
like ops.
Differential Revision: https://reviews.llvm.org/D73415
Summary:
Rewrites the extract/insert_slices operation in terms of
strided_slice/insert_strided_slice ops with intermediate
tuple uses (that should get optimimized away with typical
usage). This is done in a separate "pass" to enable testing
this particular rewriting in isolation.
Reviewers: nicolasvasilache, andydavis1, ftynse
Reviewed By: nicolasvasilache
Subscribers: merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73295
Summary:
LLVMIRIntrinsicGen is using LLVM_Op as the base class for intrinsics.
This works for LLVM intrinsics in the LLVM Dialect, but when we are
trying to convert custom intrinsics that originate from a custom
LLVM dialect (like NVVM or ROCDL) these usually have a different
"cppNamespace" that needs to be applied to these dialect.
These dialect specific characteristics (like "cppNamespace")
are typically organized by creating a custom op (like NVVM_Op or
ROCDL_Op) that passes the correct dialect to the LLVM_OpBase class.
It seems natural to allow LLVMIRIntrinsicGen to take that into
consideration when generating the conversion code from one of these
dialect to a set of target specific intrinsics.
Reviewers: rriddle, andydavis1, antiagainst, nicolasvasilache, ftynse
Subscribers: jdoerfert, mehdi_amini, jpienaar, burmako, shauheen, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73233
Summary:
This diff extends the Linalg EDSC builders so we can easily create mixed
tensor/buffer linalg.generic ops. This is expected to be useful for
HLO -> Linalg lowering.
The StructuredIndexed struct is made to derive from ValueHandle and can
now capture a type + indexing expressions. This is used to represent return
tensors.
Pointwise unary and binary builders are extended to allow both output buffers
and return tensors. This has implications on the number of region arguments.
Reviewers: ftynse, hanchung, asaadaldien
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73149
Summary:
llvm::to_vector() accepts a Range value and not the pair of arguments
we are currently passing. Also we probably want the lowered LLVM
values in the vector, while operand_begin()/operand_end() on MLIR ops
returns MLIR types. lookupValues() seems the correct way to collect
such values.
Reviewers: rriddle, andydavis1, antiagainst, nicolasvasilache, ftynse
Subscribers: jdoerfert, mehdi_amini, jpienaar, burmako, shauheen, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73137
Add lowering for constant operation with ranked tensor type to
spv.constant with spv.array type.
Differential Revision: https://reviews.llvm.org/D73022
Summary:
Add method in ODS to specify verification for operations implementing a
OpInterface. Use this with infer type op interface to verify that the
inferred type matches the return type and remove special case in
TestPatterns.
This could also have been achieved by using OpInterfaceMethod but verify
seems pretty common and it is not an arbitrary method that just happened
to be named verifyTrait, so having it be defined in special way seems
appropriate/better documenting.
Differential Revision: https://reviews.llvm.org/D73122
Summary:
This diff extends the Linalg EDSC builders so we can easily create mixed
tensor/buffer linalg.generic ops. This is expected to be useful for
HLO -> Linalg lowering.
The `StructuredIndexed` struct is made to derive from `ValueHandle` and can
now capture a type + indexing expressions. This is used to represent return
tensors.
Pointwise unary and binary builders are extended to allow both output buffers
and return tensors. This has implications on the number of region arguments.
Reviewers: ftynse, herhut, hanchung, asaadaldien, stellaraccident
Reviewed By: asaadaldien
Subscribers: merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72863
Summary:
If an intrinsic has overloadable types like llvm_anyint_ty or
llvm_anyfloat_ty then to getDeclaration() we need to pass a list
of the types that are "undefined" essentially concretizing them.
This patch add support for deriving such types from the MLIR op
that has been matched.
Reviewers: andydavis1, ftynse, nicolasvasilache, antiagainst
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72974
For the generated builder taking in unwrapped attribute values,
if the argument is a string, we should avoid wrapping it in quotes;
otherwise we are always setting the string attribute to contain
the string argument's name. The quotes come from StrinAttr's
`constBuilderCall`, which is reasonable for string literals, but
not function arguments containing strings.
Differential Revision: https://reviews.llvm.org/D72977
Summary:
This is based on the use of code constantly checking for an attribute on
a model and instead represents the distinct operaion with a different
op. Instead, this op can be used to provide better filtering.
Reverts "Revert "[mlir] Create a gpu.module operation for the GPU Dialect.""
This reverts commit ac446302ca4145cdc89f377c0c364c29ee303be5 after
fixing internal Google issues.
This additionally updates ROCDL lowering to use the new gpu.module.
Reviewers: herhut, mravishankar, antiagainst, nicolasvasilache
Subscribers: jholewinski, mgorny, mehdi_amini, jpienaar, burmako, shauheen, csigg, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits, mravishankar, rriddle, antiagainst, bkramer
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72921
Summary:
Add a `llvm.cmpxchg` op as a counterpart to LLVM IR's `cmpxchg` instruction.
Note that the `weak`, `volatile`, and `syncscope` attributes are not yet supported.
This will be useful for upcoming parallel versions of affine.for and generally
for reduction-like semantics (especially for reductions that can't make use
of `atomicrmw`, e.g. `fmax`).
Reviewers: ftynse, nicolasvasilache
Reviewed By: ftynse
Subscribers: merge_guards_bot, jfb, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72995
Summary:
Generalize broadcastable trait to variadic operands. Update the
documentation that still talked about element type as part of
broadcastable trait (that bug was already fixed). Also rename
Broadcastable to ResultBroadcastableShape to be more explicit that the
trait affects the result shape (it is possible for op to allow
broadcastable operands but not have result shape that is broadcast
compatible with operands).
Doing some intermediate work to have getBroadcastedType take an optional
elementType as input and use that if specified, instead of the common
element type of type1 and type2 in this function.
Differential Revision: https://reviews.llvm.org/D72559
mlir currently fails to build on Solaris:
/vol/llvm/src/llvm-project/dist/mlir/lib/Conversion/VectorToLoops/ConvertVectorToLoops.cpp:78:20: error: reference to 'index_t' is ambiguous
IndexHandle zero(index_t(0)), one(index_t(1));
^
/usr/include/sys/types.h:103:16: note: candidate found by name lookup is 'index_t'
typedef short index_t;
^
/vol/llvm/src/llvm-project/dist/mlir/include/mlir/EDSC/Builders.h:27:8: note: candidate found by name lookup is 'mlir::edsc::index_t'
struct index_t {
^
and many more.
Given that POSIX reserves all identifiers ending in `_t` 2.2.2 The Name Space <https://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html>, it seems
quite unwise to use such identifiers in user code, even more so without a distinguished
prefix.
The following patch fixes this by renaming `index_t` to `index_type`.
cases.
Tested on `amd64-pc-solaris2.11` and `sparcv9-sun-solaris2.11`.
Differential Revision: https://reviews.llvm.org/D72619
Summary:
Modernize some of the existing custom parsing code in the LLVM dialect.
While this reduces some boilerplate code, it also reduces the precision
of the diagnostic error messges.
Reviewers: ftynse, nicolasvasilache, rriddle
Reviewed By: rriddle
Subscribers: merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72967
Summary:
This is a simple extension to allow vectorization to work not only on GenericLinalgOp
but more generally across named ops too.
For now, this still only vectorizes matmul-like ops but is a step towards more
generic vectorization of Linalg ops.
Reviewers: ftynse
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72942
Summary:
First step towards the consolidation
of a lot of vector related utilities
that are now all over the place
(or even duplicated).
Reviewers: nicolasvasilache, andydavis1
Reviewed By: nicolasvasilache, andydavis1
Subscribers: merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72955
Summary:
This op is the counterpart to LLVM's atomicrmw instruction. Note that
volatile and syncscope attributes are not yet supported.
This will be useful for upcoming parallel versions of `affine.for` and generally
for reduction-like semantics.
Differential Revision: https://reviews.llvm.org/D72741
Summary:
This is a temporary implementation to support Flang. The LLVM-IR parser
will need to be extended in some way to support recursive types. The
exact approach here is still a work-in-progress.
Unfortunately, this won't pass roundtrip testing yet. Adding a comment
to the test file as a reminder.
Differential Revision: https://reviews.llvm.org/D72542
Introduce a new generator for MLIR tablegen driver that consumes LLVM IR
intrinsic definitions and produces MLIR ODS definitions. This is useful to
bulk-generate MLIR operations equivalent to existing LLVM IR intrinsics, such
as additional arithmetic instructions or NVVM.
A test exercising the generation is also added. It reads the main LLVM
intrinsics file and produces ODS to make sure the TableGen model remains in
sync with what is used in LLVM.
Differential Revision: https://reviews.llvm.org/D72926
When lowering `loop.if` to `spv.selection` we explicitly create
a selection header block before the control flow diverges and a
merge block where control flow subsequently converges.
Differential Revision: https://reviews.llvm.org/D72836
In SPIR-V, when a new version is introduced, it is possible some
existing extensions will be incorporated into it so that it becomes
implicitly declared if targeting the new version. This affects
conversion target specification because we need to take this into
account when allowing what extensions to use.
For a capability, it may also implies some other capabilities,
for example, the `Shader` capability implies `Matrix` the capability.
This should also be taken into consideration when preparing the
conversion target: when we specify an capability is allowed, all
its recursively implied capabilities are also allowed.
This commit adds utility functions to query implied extensions for
a given version and implied capabilities for a given capability
and updated SPIRVConversionTarget to use them.
This commit also fixes a bug in availability spec. When a symbol
(op or enum case) can be enabled by an extension, we should drop
it's minimal version requirement. Being enabled by an extension
naturally means the symbol can be used by *any* SPIR-V version
as long as the extension is supported. The grammar still encodes
the 'version' field for such cases, but it should be interpreted
as a different way: rather than meaning a minimal version
requirement, it says the symbol becomes core at that specific
version.
Differential Revision: https://reviews.llvm.org/D72765
Summary:
MLIR unlike LLVM IR supports multidimensional vector types. Such types are
lowered to nested LLVM IR arrays wrapping an LLVM IR vector for the innermost
dimension of the MLIR vector. MLIR supports constants of such types using
ElementsAttr for values. Introduce support for converting ElementsAttr into
LLVM IR Constant Aggregates recursively. This enables translation of
multidimensional vector constants from MLIR to LLVM IR.
Differential Revision: https://reviews.llvm.org/D72846
Summary:
* Add shaped container type interface which allows infering the shape, element
type and attribute of shaped container type separately. Show usage by way of
tensor type inference trait which combines the shape & element type in
infering a tensor type;
- All components need not be specified;
- Attribute is added to allow for layout attribute that was previously
discussed;
* Expand the test driver to make it easier to test new creation instances
(adding new operands or ops with attributes or regions would trigger build
functions/type inference methods);
- The verification part will be moved out of the test and to verify method
instead of ops implementing the type inference interface in a follow up;
* Add MLIRContext as arg to possible to create type for ops without arguments,
region or location;
* Also move out the section in OpDefinitions doc to separate ShapeInference doc
where the shape function requirements can be captured;
- Part of this would move to the shape dialect and/or shape dialect ops be
included as subsection of this doc;
* Update ODS's variable usage to match camelBack format for builder,
state and arg variables;
- I could have split this out, but I had to make some changes around
these and the inconsistency bugged me :)
Differential Revision: https://reviews.llvm.org/D72432
The current implementation of the LLVM-to-MLIR translation could not handle
functions used as constant values in instructions. The handling is added
trivially as `llvm.mlir.constant` can define constants of function type using
SymbolRef attributes, which works even for functions that have not been
declared yet.
This commit defines a new SPIR-V dialect attribute for specifying
a SPIR-V target environment. It is a dictionary attribute containing
the SPIR-V version, supported extension list, and allowed capability
list. A SPIRVConversionTarget subclass is created to take in the
target environment and sets proper dynmaically legal ops by querying
the op availability interface of SPIR-V ops to make sure they are
available in the specified target environment. All existing conversions
targeting SPIR-V is changed to use this SPIRVConversionTarget. It
probes whether the input IR has a `spv.target_env` attribute,
otherwise, it uses the default target environment: SPIR-V 1.0 with
Shader capability and no extra extensions.
Differential Revision: https://reviews.llvm.org/D72256
Summary:
This was previously disabled as FunctionType TypeAttrs could not be roundtripped in the IR. This has been fixed, so we can now generically print FuncOp.
Depends On D72429
Reviewed By: jpienaar, mehdi_amini
Differential Revision: https://reviews.llvm.org/D72642
Summary:
This diff fixes issues with the semantics of linalg.generic on tensors that appeared when converting directly from HLO to linalg.generic.
The changes are self-contained within MLIR and can be captured and tested independently of XLA.
The linalg.generic and indexed_generic are updated to:
To allow progressive lowering from the value world (a.k.a tensor values) to
the buffer world (a.k.a memref values), a linalg.generic op accepts
mixing input and output ranked tensor values with input and output memrefs.
```
%1 = linalg.generic #trait_attribute %A, %B {other-attributes} :
tensor<?x?xf32>,
memref<?x?xf32, stride_specification>
-> (tensor<?x?xf32>)
```
In this case, the number of outputs (args_out) must match the sum of (1) the
number of output buffer operands and (2) the number of tensor return values.
The semantics is that the linalg.indexed_generic op produces (i.e.
allocates and fills) its return values.
Tensor values must be legalized by a buffer allocation pass before most
transformations can be applied. Such legalization moves tensor return values
into output buffer operands and updates the region argument accordingly.
Transformations that create control-flow around linalg.indexed_generic
operations are not expected to mix with tensors because SSA values do not
escape naturally. Still, transformations and rewrites that take advantage of
tensor SSA values are expected to be useful and will be added in the near
future.
Subscribers: bmahjour, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72555
Summary: bfloat16 doesn't have a valid APFloat format, so we have to use double semantics when storing it. This change makes sure that hexadecimal values can be round-tripped properly given this fact.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D72667
Summary:
When converting splat constants for nested sequential LLVM IR types wrapped in
MLIR, the constant conversion was erroneously assuming it was always possible
to recursively construct a constant of a sequential type given only one value.
Instead, wait until all sequential types are unpacked recursively before
constructing a scalar constant and wrapping it into the surrounding sequential
type.
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72688
Summary:
This is based on the use of code constantly checking for an attribute on
a model and instead represents the distinct operaion with a different
op. Instead, this op can be used to provide better filtering.
Reviewers: herhut, mravishankar, antiagainst, rriddle
Reviewed By: herhut, antiagainst, rriddle
Subscribers: liufengdb, aartbik, jholewinski, mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, csigg, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72336
Summary:
The visibility defines the structural reachability of the symbol within the IR. Symbols can define one of three visibilities:
* Public
The symbol \may be accessed from outside of the visible IR. We cannot assume that we can observe all of the uses of this symbol.
* Private
The symbol may only be referenced from within the operations in the current symbol table, via SymbolRefAttr.
* Nested
The symbol may be referenced by operations in symbol tables above the current symbol table, as long as each symbol table parent also defines a non-private symbol. This allows or referencing the symbol from outside of the defining symbol table, while retaining the ability for the compiler to see all uses.
These properties help to reason about the properties of a symbol, and will be used in a follow up to implement a dce pass on dead symbols.
A few examples of what this would look like in the IR are shown below:
module @public_module {
// This function can be accessed by 'live.user'
func @nested_function() attributes { sym_visibility = "nested" }
// This function cannot be accessed outside of 'public_module'
func @private_function() attributes { sym_visibility = "private" }
}
// This function can only be accessed from within this module.
func @private_function() attributes { sym_visibility = "private" }
// This function may be referenced externally.
func @public_function()
"live.user"() {uses = [@public_module::@nested_function,
@private_function,
@public_function]} : () -> ()
Depends On D72043
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D72044
Summary:
This enables tracking calls that cross symbol table boundaries. It also simplifies some of the implementation details of CallableOpInterface, i.e. there can only be one region within the callable operation.
Depends On D72042
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D72043
Summary: This updates the use list algorithms to support querying from a specific symbol, allowing for the collection and detection of nested references. This works by walking the parent "symbol scopes" and applying the existing algorithm at each level.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D72042
Summary: The current syntax for AffineMapAttr and IntegerSetAttr conflict with function types, making it currently impossible to round-trip function types(and e.g. FuncOp) in the IR. This revision changes the syntax for the attributes by wrapping them in a keyword. AffineMapAttr is wrapped with `affine_map<>` and IntegerSetAttr is wrapped with `affine_set<>`.
Reviewed By: nicolasvasilache, ftynse
Differential Revision: https://reviews.llvm.org/D72429
Summary: Introduce m_Constant() which allows matching a constant operation without forcing the user also to capture the attribute value.
Differential Revision: https://reviews.llvm.org/D72397
Summary:
This diff makes it easier to create a `linalg.reshape` op
and adds an EDSC builder api test to exercise the new builders.
Reviewers: ftynse, jpienaar
Subscribers: mehdi_amini, rriddle, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72580
Summary:
- update zero_extendi and sign_extendi in edsc/intrinsic namespace
- Builder API test for zero_extendi and sign_extendi
Differential Revision: https://reviews.llvm.org/D72298
This change fixes the build on Windows, so that cblas_interface.dll
exports functions correctly and an implib is created and installed
correctly.
Currently, LLVM cannot be consumed on Windows after it has been
installed in a location because cblas_interface.lib is not
created/installed, thus failing the import check in `LLVMExports.cmake`.
Differential Revision: https://reviews.llvm.org/D72384
This patch fixes a test failure on a non-intel (PowerPC64) box.
The two affine.load are independent and hence llvm may reorder them.
The CHECK lines are modified for supporting reordered case.
Differential Revision: https://reviews.llvm.org/D72435
Introduce a set of function that promote a memref argument of a `gpu.func` to
workgroup memory using memory attribution. The promotion boils down to
additional loops performing the copy from the original argument to the
attributed memory in the beginning of the function, and back at the end of the
function using all available threads. The loop bounds are specified so as to
adapt to any size of the workgroup. These utilities are intended to compose
with other existing utilities (loop coalescing and tiling) in cases where the
distribution of work across threads is uneven, e.g. copying a 2D memref with
only the threads along the "x" dimension. Similarly, specialization of the
kernel to specific launch sizes should be implemented as a separate pass
combining constant propagation and canonicalization.
Introduce a simple attribute-driven pass to test the promotion transformation
since we don't have a heuristic at the moment.
Differential revision: https://reviews.llvm.org/D71904
Summary:
This diff implements the progressive lowering of insert_strided_slice.
Two cases appear:
1. when the source and dest vectors have different ranks, extract the dest
subvector at the proper offset and reduce to case 2.
2. when they have the same rank N:
a. if the source and dest type are the same, the insertion is trivial:
just forward the source
b. otherwise, iterate over all N-1 D subvectors and create an
extract/insert_strided_slice/insert replacement, reducing the problem
to vecotrs of the same N-1 rank.
This combines properly with the other conversion patterns to lower all the way to LLVM.
Reviewers: ftynse, rriddle, AlexEichenberger, andydavis1, tetuante, nicolasvasilache
Reviewed By: andydavis1
Subscribers: merge_guards_bot, mehdi_amini, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72317
Summary:
This diff implements the progressive lowering of strided_slice to either:
1. extractelement + insertelement for the 1-D case
2. extract + optional strided_slice + insert for the n-D case.
This combines properly with the other conversion patterns to lower all the way to LLVM.
Appropriate tests are added.
Reviewers: ftynse, rriddle, AlexEichenberger, andydavis1, tetuante
Reviewed By: andydavis1
Subscribers: merge_guards_bot, mehdi_amini, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72310
Summary:
This diff adds lowering of the linalg.reshape op to LLVM.
A new descriptor is created with fields initialized as follows:
1. allocatedPTr, alignedPtr and offset are copied from the source descriptor
2. sizes are copied from the static destination shape
3. strides are copied from the static strides collected with `getStridesAndOffset`
Only the static case in which the target view conforms to strided memref
semantics is supported. Other cases are left for future work and will be added on
a per-need basis.
Reviewers: ftynse, mravishankar
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72316
Summary:
This diff adds a new operation to linalg to allow reshaping of an
existing view into a new view in the same buffer at the same offset.
More specifically:
The `linalg.reshape` op produces a new view whose sizes are a reassociation
of the original `view`. Depending on whether or not the reassociated
MemRefType is contiguous, the resulting memref may require explicit alloc
and copies.
A reassociation is defined as a continous grouping of dimensions and is
represented with a affine map array attribute. In the future, non-continous
groupings may be allowed (i.e. permutations, reindexings etc).
For now, it is assumed that either:
1. a reassociation produces and consumes contiguous MemRefType or,
2. the reshape op will be folded into its consumers (by changing the shape
of the computations).
All other cases are undefined behavior and a reshape op may not lower to
LLVM if it cannot be proven statically that it does not require alloc+copy.
A reshape may either collapse or expand dimensions, depending on the
relationship between source and target memref ranks. The verification rule
is that the reassociation maps are applied to the memref with the larger
rank to obtain the memref with the smaller rank. In the case of a dimension
expansion, the reassociation maps can be interpreted as inverse maps.
Examples:
```mlir
// Dimension collapse (i, j) -> i' and k -> k'
%1 = linalg.reshape %0 [(i, j, k) -> (i, j),
(i, j, k) -> (k)] :
memref<?x?x?xf32, stride_spec> into memref<?x?xf32, stride_spec_2>
```
```mlir
// Dimension expansion i -> (i', j') and (k) -> (k')
%1 = linalg.reshape %0 [(i, j, k) -> (i, j),
(i, j, k) -> (k)] :
memref<?x?xf32, stride_spec> into memref<?x?x?xf32, stride_spec_2>
```
The relevant invalid and roundtripping tests are added.
Reviewers: AlexEichenberger, ftynse, rriddle, asaadaldien, yangjunpro
Subscribers: kiszk, merge_guards_bot, mehdi_amini, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72168
Summary: This diff reimplements getStridesAndOffset in a significantly simpler way by operating on the AffineExpr and calling into simplifyAffineExpr instead of rolling its own saturating arithmetic.
As a consequence it becomes quite simple to extend the behavior of getStridesAndOffset to encompass more cases by manipulating the AffineExpr more directly.
The divisions are still filtered out and continue to yield fully dynamic strides.
Simplifying the divisions is left for a later time if compelling use cases arise.
Relevant tests are added.
Reviewers: ftynse
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72098
This commit fixes shader ABI attributes to use `spv.` as the prefix
so that they match the dialect's namespace. This enables us to add
verification hooks in the SPIR-V dialect to verify them.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D72062
Summary:
This changes the implementation of OpResult to have some of the results be represented inline in Value, via a pointer int pair of Operation*+result number, and the rest being trailing objects on the main operation. The full details of the new representation is detailed in the proposal here:
https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
The only difference between here and the above proposal is that we only steal 2-bits for the Value kind instead of 3. This means that we can only fit 2-results inline instead of 6. This allows for other users to steal the final bit for PointerUnion/etc. If necessary, we can always steal this bit back in the future to save more space if 3-6 results are common enough.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D72020
This commit updates gen_spirv_dialect.py to query the grammar and
generate availability spec for various enum attribute definitions
and all defined ops.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D72095
Summary:
This diff adds support to allow `linalg.generic` and
`linalg.indexed_generic` to take tensor input and output
arguments.
The subset of output tensor operand types must appear
verbatim in the result types after an arrow. The parser,
printer and verifier are extended to accomodate this
behavior.
The Linalg operations now support variadic ranked tensor
return values. This extension exhibited issues with the
current handling of NativeCall in RewriterGen.cpp. As a
consequence, an explicit cast to `SmallVector<Value, 4>`
is added in the proper place to support the new behavior
(better suggestions are welcome).
Relevant cleanups and name uniformization are applied.
Relevant invalid and roundtrip test are added.
Reviewers: mehdi_amini, rriddle, jpienaar, antiagainst, ftynse
Subscribers: burmako, shauheen, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72022
Lots of SPIR-V ops take enum attributes and certain enum cases
need extra capabilities or extensions to be available. This commit
extends to allow specifying availability spec on enum cases.
Extra utility functions are generated for the corresponding enum
classes to return the availability requirement. The availability
interface implemention for a SPIR-V op now goes over all enum
attributes to collect the availability requirements.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D71947
Summary:
This is part of an ongoing cleanup and uniformization work.
This diff performs 3 types of cleanups:
1. Uniformize transformation names.
2. Replace all pattern operands that need not be captured by `$_`
3. Replace all usage of pattern captured op by the normalized `op` name (instead of positional parameters such as `$0`)
Reviewers: ftynse
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72081
SPIR-V has a few mechanisms to control op availability: version,
extension, and capabilities. These mechanisms are considered as
different availability classes.
This commit introduces basic definitions for modelling SPIR-V
availability classes. Specifically, an `Availability` class is
added to SPIRVBase.td, along with two subclasses: MinVersion
and MaxVersion for versioning. SPV_Op is extended to take a
list of `Availability`. Each `Availability` instance carries
information for generating op interfaces for the corresponding
availability class and also the concrete availability
requirements.
With the availability spec on ops, we can now auto-generate the
op interfaces of all SPIR-V availability classes and also
synthesize the op's implementations of these interfaces. The
interface generation is done via new TableGen backends
-gen-avail-interface-{decls|defs}. The op's implementation is
done via -gen-spirv-avail-impls.
Differential Revision: https://reviews.llvm.org/D71930
The conversion from std.and/std.or to spv.LogicalAnd/spv.LogicalOr is
only valid for boolean (i1) types. Modify BinaryOpPattern in
StandardToSPIRV.td to allow limiting the type of the operands for
which the pattern is applied.
Differential Revision: https://reviews.llvm.org/D71881
Summary:
`mlir-translate -import-llvm test.ll` was going into segmentation fault if `test.ll` had `float` or `double` constants.
For example,
```
%3 = fadd double 3.030000e+01, %0
```
Now, it is handled in `Importer::getConstantAsAttr` (similar behaviour as normal integers)
Added tests for FP arithmetic
Reviewers: ftynse, mehdi_amini
Reviewed By: ftynse, mehdi_amini
Subscribers: shauheen, mehdi_amini, rriddle, jpienaar, burmako, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71912
This change refactors pass options to be more similar to how statistics are modeled. More specifically, the options are specified directly on the pass instead of in a separate options class. (Note that the behavior and specification for pass pipelines remains the same.) This brings about several benefits:
* The specification of options is much simpler
* The round-trip format of a pass can be generated automatically
* This gives a somewhat deeper integration with "configuring" a pass, which we could potentially expose to users in the future.
PiperOrigin-RevId: 286953824
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
Rename the 'shlis' operation in the standard dialect to 'shift_left'. Add tests
for this operation (these have been missing so far) and add a lowering to the
'shl' operation in the LLVM dialect.
Add also 'shift_right_signed' (lowered to LLVM's 'ashr') and 'shift_right_unsigned'
(lowered to 'lshr').
The original plan was to name these operations 'shift.left', 'shift.right.signed'
and 'shift.right.unsigned'. This works if the operations are prefixed with 'std.'
in MLIR assembly. Unfortunately during import the short form is ambigous with
operations from a hypothetical 'shift' dialect. The best solution seems to omit
dots in standard operations for now.
Closestensorflow/mlir#226
PiperOrigin-RevId: 286803388
- a block argument associated with an arbitrary op can't be a valid
dimensional identifier; it has to be the block argument of either
a function op or an affine.for.
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#331
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/331 from bondhugula:valid_dim 3273b4fcbaa31fb7b6671d93c9e42a6b2a6a4e4c
PiperOrigin-RevId: 286593693
This will allow us to lower most of gpu.all_reduce (when all_reduce
doesn't exist in the target dialect) within the GPU dialect, and only do
target-specific lowering for the shuffle op.
PiperOrigin-RevId: 286548256
This is the block argument equivalent of the existing `getAsmResultNames` hook.
Closestensorflow/mlir#329
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/329 from plaidml:flaub-region-arg-names fc7876f2d1335024e441083cd25263fd6247eb7d
PiperOrigin-RevId: 286523299
Concatting lists in TableGen is easy, creating unique lists less so. There is no reason for duplicated op traits so we could throw an error instead but duplicates could occur due to concatting different list of traits in ODS (e.g., for convenience reasons), so just dedup them during Operator trait construction instead.
PiperOrigin-RevId: 286488423
Update vector transfer_read/write ops to operatate on memrefs with vector element type.
This handle cases where the memref vector element type represents the minimal memory transfer unit (or multiple of the minimal memory transfer unit).
PiperOrigin-RevId: 286482115
Adds vector ReshapeOp to the VectorOps dialect. An aggregate vector reshape operation, which aggregates multiple hardware vectors, can enable optimizations during decomposition (e.g. loading one input hardware vector and performing multiple rotate and scatter store operations to the vector output).
PiperOrigin-RevId: 286440658
Introduces some centralized methods to move towards
consistent use of i32 as vector subscripts.
Note: sizes/strides/offsets attributes are still i64
PiperOrigin-RevId: 286434133
Added test cases for the newly added LLVM operations and lowering features.
Closestensorflow/mlir#300
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/300 from dfki-jugr:std_to_llvm da6168bbc1a369ae2e99ad3881fdddd82f075dd4
PiperOrigin-RevId: 286231169
This enables providing a default implementation of an interface method. This method is defined on the Trait that is attached to the operation, and thus has all of the same constraints and properties as any other interface method. This allows for interface authors to provide a conservative default implementation for certain methods, without requiring that all users explicitly define it. The default implementation can be specified via the argument directly after the interface method body:
StaticInterfaceMethod<
/*desc=*/"Returns whether two array of types are compatible result types for an op.",
/*retTy=*/"bool",
/*methodName=*/"isCompatibleReturnTypes",
/*args=*/(ins "ArrayRef<Type>":$lhs, "ArrayRef<Type>":$rhs),
/*methodBody=*/[{
return ConcreteOp::isCompatibleReturnTypes(lhs, rhs);
}],
/*defaultImplementation=*/[{
/// Returns whether two arrays are equal as strongest check for
/// compatibility by default.
return lhs == rhs;
}]
PiperOrigin-RevId: 286226054
Introduce affine.prefetch: op to prefetch using a multi-dimensional
subscript on a memref; similar to affine.load but has no effect on
semantics, but only on performance.
Provide lowering through std.prefetch, llvm.prefetch and map to llvm's
prefetch instrinsic. All attributes reflected through the lowering -
locality hint, rw, and instr/data cache.
affine.prefetch %0[%i, %j + 5], false, 3, true : memref<400x400xi32>
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#225
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/225 from bondhugula:prefetch 4c3b4e93bc64d9a5719504e6d6e1657818a2ead0
PiperOrigin-RevId: 286212997
When memory attributions are present in `gpu.func`, require that they are of
memref type and live in memoryspaces 3 and 5 for workgroup and private memory
attributions, respectively. Adapt the conversion from the GPU dialect to the
NVVM dialect to drop the private memory space from attributions as NVVM is able
to model them as local `llvm.alloca`s in the default memory space.
PiperOrigin-RevId: 286161763
The inline interface uses two methods to check legality of inling:
1) Can a region be inlined into another.
2) Can an operation be inlined into another.
Setting the former to true, allows the inliner to use the second for
legality checks. Add this method to the SPIR-V dialect inlining
interface.
PiperOrigin-RevId: 286041734
This CL adds more Linalg EDSC ops and tests to support building pointwise operations along with conv and dilated_conv.
This also fixes a bug in the existing linalg_matmul EDSC and beefs up the test.
The current set of ops is already enough to build an interesting, albeit simple, model used internally.
PiperOrigin-RevId: 285838012
This updates the lowering pipelines from the GPU dialect to lower-level
dialects (NVVM, SPIRV) to use the recently introduced gpu.func operation
instead of a standard function annotated with an attribute. In particular, the
kernel outlining is updated to produce gpu.func instead of std.func and the
individual conversions are updated to consume gpu.funcs and disallow standard
funcs after legalization, if necessary. The attribute "gpu.kernel" is preserved
in the generic syntax, but can also be used with the custom syntax on
gpu.funcs. The special kind of function for GPU allows one to use additional
features such as memory attribution.
PiperOrigin-RevId: 285822272
This PR targest issue tensorflow/mlir#295. It exposes the already existing
subiew promotion pass as a declarative pattern
Change-Id: If901ebef9fb53fcd0b12ecc536f6b174ce320b92
Closestensorflow/mlir#315
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/315 from tetuante:issue295 8e5f268b6d85f31015c33505329dbd7a4db97ac5
PiperOrigin-RevId: 285801463
Similar to insert/extract vector instructions but
(1) work on 1-D vectors only
(2) allow for a dynamic index
%c3 = constant 3 : index
%0 = vector.insertelement %arg0, %arg1[%c : index] : vector<4xf32>
%1 = vector.extractelement %arg0[%c3 : index] : vector<4xf32>
PiperOrigin-RevId: 285792205
ExtractSlicesOp extracts slices of its vector operand and with a specified tiling scheme.
This operation centralizes the tiling scheme around a single op, which simplifies vector op unrolling and subsequent pattern rewrite transformations.
PiperOrigin-RevId: 285761129
During the conversion from the standard dialect to the LLVM dialect,
memref-typed arguments are promoted from registers to memory and passed into
functions by pointer. This had been introduced into the lowering to work around
the abesnce of calling convention modeling in MLIR to enable better
interoperability with LLVM IR generated from C, and has been exerciced for
several months. Make this promotion the default calling covention when
converting to the LLVM dialect. This adds the documentation, simplifies the
code and makes the conversion consistent across function operations and
function types used in other places, e.g. in high-order functions or
attributes, which would not follow the same rule previously.
PiperOrigin-RevId: 285751280
This is needed for calling the generator on a .td file that contains both OpInterface definitions and op definitions with DeclareOpInterfaceMethods<...> Traits.
PiperOrigin-RevId: 285465784
This will be evolved into a simple programming model for custom ops and custom layers in followup CLs.
This CL also deletes the obsolete tablegen's reference-impl.td that was using EDSCs.
PiperOrigin-RevId: 285459545
This change allows for DialectConversion to attempt folding as a mechanism to legalize illegal operations. This also expands folding support in OpBuilder::createOrFold to generate new constants when folding, and also enables it to work in the context of a PatternRewriter.
PiperOrigin-RevId: 285448440
Add variant that does invoke infer type op interface where defined. Also add entry function that invokes that different separate argument builders for wrapped, unwrapped and inference variant.
PiperOrigin-RevId: 285220709
This type is not used anymore now that Linalg view and subview have graduated to std and that alignment is supported on alloc.
PiperOrigin-RevId: 285213424
This allows reusing the implementation in various places by just including and permits more easily writing test functions without explicit template instantiations.
This also modifies UnrankedMemRefType to take a template type parameter since it cannot be type agnostic atm.
PiperOrigin-RevId: 285187711
Both work for the current use case, but the latter allows implementing
prefix sums and is a little easier to understand for partial warps.
PiperOrigin-RevId: 285145287
This CL adds more common information to StructuredOpsUtils.h
The n_view attribute is retired in favor of args_in + args_out but the CL is otherwise NFC.
PiperOrigin-RevId: 285000621