This function is used in exactly one place, and only in asserts
builds. Move it a few lines up before the use and only define it when
asserts are enabled. Fixes the release build under -Werror.
Also remove the forward declaration and commentary that was basically
identical to the code itself.
llvm-svn: 261722
Change TargetInstrInfo API to take `MachineInstr&` instead of
`MachineInstr*` in the functions related to predicated instructions
(I'll try to come back later and get some of the rest). All of these
functions require non-null parameters already, so references are more
clear. As a bonus, this happens to factor away a host of implicit
iterator => pointer conversions.
No functionality change intended.
llvm-svn: 261605
Delete MachineInstr::getIterator(), since the term "iterator" is
overloaded when talking about MachineInstr.
- Downcast to ilist_node in iplist::getNextNode() and getPrevNode() so
that ilist_node::getIterator() is still available.
- Add it back as MachineInstr::getInstrIterator(). This matches the
naming in MachineBasicBlock.
- Add MachineInstr::getBundleIterator(). This is explicitly called
"bundle" (not matching MachineBasicBlock) to disintinguish it clearly
from ilist_node::getIterator().
- Update all calls. Some of these I switched to `auto` to remove
boiler-plate, since the new name is clear about the type.
There was one call I updated that looked fishy, but it wasn't clear what
the right answer was. This was in X86FrameLowering::inlineStackProbe(),
added in r252578 in lib/Target/X86/X86FrameLowering.cpp. I opted to
leave the behaviour unchanged, but I'll reply to the original commit on
the list in a moment.
llvm-svn: 261504
I missed == and != when I removed implicit conversions between iterators
and pointers in r252380 since they were defined outside ilist_iterator.
Since they depend on getNodePtrUnchecked(), they indirectly rely on UB.
This commit removes all uses of these operators. (I'll delete the
operators themselves in a separate commit so that it can be easily
reverted if necessary.)
There should be NFC here.
llvm-svn: 261498
Add support for the case where we have a consecutive load (which must include the first + last elements) with a mixture of undef/zero elements. We load the vector and then apply a shuffle to clear the zero'd elements.
Differential Revision: http://reviews.llvm.org/D17297
llvm-svn: 261490
Summary:
- Rename `"skylake"` == SkylakeServerProc to `"skylake-avx512"`
- Change `"skylake"` to denote SkylakeClientProc
- Fix the detection of cpu family 6 and model 94 to be
SkylakeClientProc instead of SkylakeServerProc
- Remove the `"cnl"` for CannonLake
Reviewers: craig.topper, delena
Subscribers: zansari, echristo, qcolombet, RKSimon, spatel, DavidKreitzer, mcrosier, llvm-commits
Differential Revision: http://reviews.llvm.org/D17090
llvm-svn: 261482
COFF doesn't have sections with mergeable contents. Instead, each
constant pool entry ends up in a COMDAT section. The linker, when
choosing between COMDAT sections, doesn't choose the max alignment of
the two sections. You just get whatever alignment was on the section.
If one constant needed a higher alignment in one object file from
another one, then we will get into trouble if the linker chooses the
lower alignment one.
Instead, lets promote the alignment of the constant pool entry to make
sure we don't use an under aligned constant with an instruction which
assumed otherwise.
This fixes PR26680.
llvm-svn: 261462
Fixed a bug introduced by D16683 when a binary shuffle is simplified to a unary shuffle (with undef/zero sentinel mask indices) - if this resulted in only the second input being used combineX86ShuffleChain failed to take this into account and still referenced the first input.
llvm-svn: 261434
First small step towards fixing PR26667 - we need to ensure that combineX86ShuffleChain only gets called with a valid shuffle input node (a similar issue was found in D17041).
llvm-svn: 261433
TLSADDR nodes are lowered into actuall calls inside MC. In order to prevent
shrink-wrapping from pushing prologue/epilogue past them (which result
in TLS variables being accessed before the stack frame is set up), we
put markers, so that the stack gets adjusted properly.
Thanks to Quentin Colombet for guidance/help on how to fix this problem!
llvm-svn: 261387
Summary:
When optimizing for size, sqrt calls can be incorrectly selected as
AVX512 VSQRT instructions. This is because X86InstrAVX512.td has a
`Requires<[OptForSize]>` in its `avx512_sqrt_scalar` multiclass
definition. Even if the target does not support AVX512, the class can
apparently still be chosen, leading to an incorrect selection of
`vsqrtss`.
In PR26625, this lead to an assertion: Reg >= X86::FP0 && Reg <=
X86::FP6 && "Expected FP register!", because the `vsqrtss` instruction
requires an XMM register, which is not available on i686 CPUs.
Reviewers: grosbach, resistor, joker.eph
Subscribers: spatel, emaste, llvm-commits
Differential Revision: http://reviews.llvm.org/D17414
llvm-svn: 261360
This is effectively NFC because Atom is the only in-order x86 subtarget currently,
but the predicate would have become wrong if any other in-order CPU came along.
See related discussion in:
http://reviews.llvm.org/D16836
llvm-svn: 261275
If we know that all of our successors want to be in the exact same
state, it makes sense to hoist the state transition into their common
predecessor.
Differential Revision: http://reviews.llvm.org/D17391
llvm-svn: 261262
In r260133, LLVM was changed to no longer extend i8/i16 return values,
as it's not required by the ABI. However, code was found in the wild
that relies on the old behaviour on Darwin, so this commit reverts
back to that old behaviour for Darwin.
On other platforms, it's less likely that code would be depending on
the old behaviour, as GCC and MSVC haven't been extending such return
values.
llvm-svn: 261235
In cases where the PSHUFB shuffle mask is shared it might not be bitcasted to a vXi8 byte vector. This patch adds support for decoding these wider shuffle masks from the ConstantPool.
The test case in question makes use of this to recognise the shuffle mask is an unary UNPCKL pattern and simplifies accordingly.
llvm-svn: 261201
32-bit x86 Windows targets use a linked-list of nodes allocated on the
stack, referenced to via thread-local storage. The personality routine
interprets one of the fields in the node as a 'state number' which
indicates where the personality routine should transfer control.
State transitions are possible only before call-sites which may throw
exceptions. Our previous scheme had us update the state number before
all call-sites which may throw.
Instead, we can try to minimize the number of times we need to store by
reasoning about the nearest store which dominates the current call-site.
If the last store agrees with the current call-site, then we know that
the state-update is redundant and can be elided.
This is largely straightforward: an RPO walk of the blocks allows us to
correctly forward propagate the information when the function is a DAG.
Currently, loops are not handled optimally and may trigger superfluous
state stores.
Differential Revision: http://reviews.llvm.org/D16763
llvm-svn: 261122
Bug description:
The bug was discovered when test was compiled with -O0.
In case scatter result is DAG root , VectorLegalizer failed (assert) due to LowerMSCATTER() return kmask as result.
Change LowerMSCATTER() to return chain as original node do.
Differential Revision: http://reviews.llvm.org/D17331
llvm-svn: 261090
AVX1 doesn't support the shuffling of 256-bit integer vectors. For 32/64-bit elements we get around this by shuffling as float/double but for 8/16-bit elements (assuming they can't widen) we currently just split, shuffle as 128-bit vectors and concatenate the results back.
This patch adds the ability to lower using the bit-blend patterns before defaulting to the splitting behaviour.
Part 2 of 2
Differential Revision: http://reviews.llvm.org/D17292
llvm-svn: 261082
AVX1 doesn't support the shuffling of 256-bit integer vectors. For 32/64-bit elements we get around this by shuffling as float/double but for 8/16-bit elements (assuming they can't widen) we currently just split, shuffle as 128-bit vectors and concatenate the results back.
This patch adds the ability to lower using the bit-mask patterns before defaulting to the splitting behaviour. In some cases this ends up matching what AVX2 would do anyhow or what AVX1 does on the split vectors.
Part 1 of 2
Differential Revision: http://reviews.llvm.org/D17292
llvm-svn: 261081
Avoid reuse of operand variables, keep them local to a particular lowering - the operand collection is unique to each case anyhow.
Renamed from V to Ops to more closely match their purpose.
llvm-svn: 261078
__chkstk clobbers EAX. If EAX is live across the prologue, then we have
to take extra steps to save it. We already had code to do this if EAX
was a register parameter. This change adapts it to work when shrink
wrapping is used.
llvm-svn: 261039
Currently, we sometimes miscompile this vector pattern:
(c ? -v : v)
We lower it to (because "c" is <4 x i1>, lowered as a vector mask):
(~c & v) | (c & -v)
When we have SSSE3, we incorrectly lower that to PSIGN, which does:
(c < 0 ? -v : c > 0 ? v : 0)
in other words, when c is either all-ones or all-zero:
(c ? -v : 0)
While this is an old bug, it rarely triggers because the PSIGN combine
is too sensitive to operand order. This will be improved separately.
Note that the PSIGN tests are also incorrect. Consider:
%b.lobit = ashr <4 x i32> %b, <i32 31, i32 31, i32 31, i32 31>
%sub = sub nsw <4 x i32> zeroinitializer, %a
%0 = xor <4 x i32> %b.lobit, <i32 -1, i32 -1, i32 -1, i32 -1>
%1 = and <4 x i32> %a, %0
%2 = and <4 x i32> %b.lobit, %sub
%cond = or <4 x i32> %1, %2
ret <4 x i32> %cond
if %b is zero:
%b.lobit = <4 x i32> zeroinitializer
%sub = sub nsw <4 x i32> zeroinitializer, %a
%0 = <4 x i32> <i32 -1, i32 -1, i32 -1, i32 -1>
%1 = <4 x i32> %a
%2 = <4 x i32> zeroinitializer
%cond = or <4 x i32> %a, zeroinitializer
ret <4 x i32> %a
whereas we currently generate:
psignd %xmm1, %xmm0
retq
which returns 0, as %xmm1 is 0.
Instead, use a pure logic sequence, as described in:
https://graphics.stanford.edu/~seander/bithacks.html#ConditionalNegate
Fixes PR26110.
Differential Revision: http://reviews.llvm.org/D17181
llvm-svn: 261023
If KMOVB not supported (require AVX512DQ) only KMOVW can be used so store size should be 2 bytes.
Differential Revision: http://reviews.llvm.org/D17138
llvm-svn: 260878
This patch attempts to represent a shuffle as a repeating shuffle (recognisable by is128BitLaneRepeatedShuffleMask) with the source input(s) in their original lanes, followed by a single permutation of the 128-bit lanes to their final destinations.
On AVX2 we can additionally attempt to match using 64-bit sub-lane permutation. AVX2 can also now match a similar 'broadcasted' repeating shuffle.
This patch has several benefits:
* Avoids prematurely matching with lowerVectorShuffleByMerging128BitLanes which can require both inputs to have their input lanes permuted before shuffling.
* Can replace PERMPS/PERMD instructions - although these are useful for cross-lane unary shuffling, they require their shuffle mask to be pre-loaded (and increase register pressure).
* Matching the repeating shuffle makes use of a lot of existing shuffle lowering.
There is an outstanding minor AVX1 regression (combine_unneeded_subvector1 in vector-shuffle-combining.ll) of a previously 128-bit shuffle + subvector splat being converted to a subvector splat + (2 instruction) 256-bit shuffle, I intend to fix this in a followup patch for review.
Differential Revision: http://reviews.llvm.org/D16537
llvm-svn: 260834
As shown in:
https://llvm.org/bugs/show_bug.cgi?id=23203
...we currently die because lowering believes that mfence is allowed without SSE2 on x86-64,
but the instruction def doesn't know that.
I don't know if allowing mfence without SSE is right, but if not, at least now it's consistently wrong. :)
Differential Revision: http://reviews.llvm.org/D17219
llvm-svn: 260828
Summary:
Refactor common value, scope, and label tracking logic out of DwarfDebug
into a common base class called DebugHandlerBase.
Update an old LLVM IR test case to avoid an assertion in LexicalScopes.
Reviewers: dblaikie, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16931
llvm-svn: 260432
I reinvented this functionality in http://reviews.llvm.org/D16828 because it was
hidden away as a static function. The changes in x86 are not based on a complete
audit. I suspect there are other possible uses there, and there are almost certainly
more potential users in other targets.
llvm-svn: 260295
As mentioned in http://reviews.llvm.org/D16828 , the related masked load transform
will need this logic, so I'm moving it out to make that patch smaller.
llvm-svn: 260240
On AVX2 target we are poorly legalizing SIGN_EXTEND ops for which the input's legalized type doesn't have the same number of elements as the destination, resulting in an ANY_EXTEND followed by a SIGN_EXTEND_INREG.
This patch uses the existing SIGN_EXTEND -> SIGN_EXTEND_VECTOR_INREG combine to extend the input to the size of the result and using SIGN_EXTEND_VECTOR_INREG instead.
Differential Revision: http://reviews.llvm.org/D16994
llvm-svn: 260210
As discussed on PR26491, this patch adds support for lowering v4f32 shuffles to the MOVLHPS/MOVHLPS instructions. It also adds support for memory folding with their MOVLPS/MOVHPS load equivalents.
This first patch only really helps SSE1 targets as SSE2+ targets will widen the shuffle mask and use v2f64 equivalents (although they still combine to MOVLHPS/MOVHLPS for v2f64 splats). This will have to be addressed in a future patch, most likely when we add support for binary target shuffle combines.
Differential Revision: http://reviews.llvm.org/D16956
llvm-svn: 260168
Another opportunity to reduce masked stores: in D16691, we decided not to attempt the 'one mask element is set'
transform in InstCombine, but this should be a win for any AVX machine.
Code comments note that this transform could be extended for other targets / cases.
Differential Revision: http://reviews.llvm.org/D16828
llvm-svn: 260145
This matches GCC and MSVC's behaviour, and saves on code size.
We were already not extending i1 return values on x86_64 after r127766. This
takes that patch further by applying it to x86 target as well, and also for i8
and i16.
The ABI docs have been unclear about the required behaviour here. The new i386
psABI [1] clearly states (Table 2.4, page 14) that i1, i8, and i16 return
vales do not need to be extended beyond 8 bits. The x86_64 ABI doc is being
updated to say the same [2].
Differential Revision: http://reviews.llvm.org/D16907
[1]. https://01.org/sites/default/files/file_attach/intel386-psabi-1.0.pdf
[2]. https://groups.google.com/d/msg/x86-64-abi/E8O33onbnGQ/_RFWw_ixDQAJ
llvm-svn: 260133
The combineX86ShufflesRecursively only supports unary shuffles, but was missing the opportunity to combine binary shuffles with a zero / undef second input.
This patch resolves target shuffle inputs, converting the shuffle mask elements to SM_SentinelUndef/SM_SentinelZero where possible. It then resolves the updated mask to check if we have created a faux unary shuffle.
Additionally, we now attempt to recursively call combineX86ShufflesRecursively for all input operands (we used to just recurse for unary integer shuffles and unary unpacks) - it safely returns early if its not a target shuffle.
Differential Revision: http://reviews.llvm.org/D16683
llvm-svn: 260063
Pulled out the code used by PSHUFB/VPERMV/VPERMV3 shuffle mask decoding into common helper functions.
The helper functions handle masks coming from BROADCAST/BUILD_VECTOR and ConstantPool nodes respectively.
llvm-svn: 260032
First step towards being able to decode AVX512 PMOVZX instructions without a massive bloat in the shuffle decode switch statement.
This should also make it easier to decode X86ISD::VZEXT target shuffles in the future.
llvm-svn: 259995
Choose between MOVD/MOVSS and MOVQ/MOVSD depending on the target vector type.
This has a lot fewer test changes than trying to add this to X86InstrInfo::setExecutionDomain.....
llvm-svn: 259816
This patch adds support for consecutive (load/undef elements) 32-bit loads, followed by trailing undef/zero elements to be combined to a single MOVD load.
Differential Revision: http://reviews.llvm.org/D16729
llvm-svn: 259796
Use hash table (key is a memory operand) to store found LEA instructions to reduce compile time.
Differential Revision: http://reviews.llvm.org/D16404
llvm-svn: 259770
Follow up to D16217 and D16729
This change uncovered an odd pattern where VZEXT_LOAD v4i64 was being lowered to a load of the lower v2i64 (so the 2nd i64 destination element wasn't being zeroed), I can't find any use/reason for this and have removed the pattern and replaced it so only the 1st i64 element is loaded and the upper bits all zeroed. This matches the description for X86ISD::VZEXT_LOAD
Differential Revision: http://reviews.llvm.org/D16768
llvm-svn: 259635
Summary:
Enables eip-based addressing, e.g.,
lea constant(%eip), %rax
lea constant(%eip), %eax
in MC, (used for the x32 ABI). EIP-base addressing is also valid in x86_64,
it is left enabled for that architecture as well.
Patch by João Porto
Differential Revision: http://reviews.llvm.org/D16581
llvm-svn: 259528
Fix a crash in `getMemOpBaseRegImmOfs` that happens if the base of
`MemOp` is a frame index memory operand. The fix is to have
`getMemOpBaseRegImmOfs` bail out in such cases. We can possibly be more
clever here, if needed.
llvm-svn: 259456
Officially, we don't acknowledge non-default configurations of MXCSR,
as getting there would require usage of the FENV_ACCESS pragma (at
least insofar as rounding mode is concerned).
We don't support the pragma, so we can assume that the default
rounding mode - round to nearest, ties to even - is always used.
However, it's inconsistent with the rest of the instruction set,
where MXCSR is always effective (unless otherwise specified).
Also, it's an unnecessary obstacle to the few brave souls that use
fenv.h with LLVM.
Avoid the hard-coded rounding mode for fp_to_f16; use MXCSR instead.
llvm-svn: 259448
Minor patch to trace back through target shuffles to the source of the inserted element in a (V)INSERTPS shuffle.
Differential Revision: http://reviews.llvm.org/D16652
llvm-svn: 259343
Enable truncate 128/256bit packed byte/word with AVX512BW but without AVX512VL, use 512bit instructions.
Differential Revision: http://reviews.llvm.org/D16531
llvm-svn: 259044
move ptestm{q|d} intrinsics from patterns form (in td file) to the intrinsics table
Differential Revision: http://reviews.llvm.org/D16633
llvm-svn: 259029
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"I felt a great disturbance in the [build system], as if millions of [makefiles] suddenly cried out in terror and were suddenly silenced. I fear something [amazing] has happened."
- Obi Wan Kenobi
Reviewers: chandlerc, grosbach, bob.wilson, tstellarAMD, echristo, whitequark
Subscribers: chfast, simoncook, emaste, jholewinski, tberghammer, jfb, danalbert, srhines, arsenm, dschuff, jyknight, dsanders, joker.eph, llvm-commits
Differential Revision: http://reviews.llvm.org/D16471
llvm-svn: 258861
Currently, AnalyzeBranch() fails non-equality comparison between floating points
on X86 (see https://llvm.org/bugs/show_bug.cgi?id=23875). This is because this
function can modify the branch by reversing the conditional jump and removing
unconditional jump if there is a proper fall-through. However, in the case of
non-equality comparison between floating points, this can turn the branch
"unanalyzable". Consider the following case:
jne.BB1
jp.BB1
jmp.BB2
.BB1:
...
.BB2:
...
AnalyzeBranch() will reverse "jp .BB1" to "jnp .BB2" and then "jmp .BB2" will be
removed:
jne.BB1
jnp.BB2
.BB1:
...
.BB2:
...
However, AnalyzeBranch() cannot analyze this branch anymore as there are two
conditional jumps with different targets. This may disable some optimizations
like block-placement: in this case the fall-through behavior is enforced even if
the fall-through block is very cold, which is suboptimal.
Actually this optimization is also done in block-placement pass, which means we
can remove this optimization from AnalyzeBranch(). However, currently
X86::COND_NE_OR_P and X86::COND_NP_OR_E are not reversible: there is no defined
negation conditions for them.
In order to reverse them, this patch defines two new CondCode X86::COND_E_AND_NP
and X86::COND_P_AND_NE. It also defines how to synthesize instructions for them.
Here only the second conditional jump is reversed. This is valid as we only need
them to do this "unconditional jump removal" optimization.
Differential Revision: http://reviews.llvm.org/D11393
llvm-svn: 258847
This patch adds support for trailing zero elements to VZEXT_LOAD loads (and checks that no zero elts occur within the consecutive load).
It also generalizes the 64-bit VZEXT_LOAD load matching to work for loads other than 2x32-bit loads.
After this patch it will also be easier to add support for other basic load patterns like 32-bit VZEXT_LOAD loads, PMOVZX and subvector load insertion.
Differential Revision: http://reviews.llvm.org/D16217
llvm-svn: 258798
Their opcodes are used as part of the VEX prefix in 64-bit mode. Clearly the disassembler implicitly decoded them as AVX instructions in 64-bit mode, but I think the AsmParser would have encoded them.
llvm-svn: 258793
Step one towards using a simple binary search to lookup intrinsic IDs
instead of our crazy table generated switch+memcmp+startswith code that
makes Function.cpp take about a minute to compile. See PR24785 and
PR11951 for why we should do this.
The X86 backend contains tables that need to be sorted on intrinsic ID,
so reorder those.
llvm-svn: 258757
There's a special case in EmitLoweredSelect() that produces an improved
lowering for cmov(cmov) patterns. However this special lowering is
currently broken if the inner cmov has multiple users so this patch
stops using it in this case.
If you wonder why this wasn't fixed by continuing to use the special
lowering and inserting a 2nd PHI for the inner cmov: I believe this
would incur additional copies/register pressure so the special lowering
does not improve upon the normal one anymore in this case.
This fixes http://llvm.org/PR26256 (= rdar://24329747)
llvm-svn: 258729
VPMADD52LUQ - Packed Multiply of Unsigned 52-bit Integers and Add the Low 52-bit Products to Qword Accumulators
VPMADD52HUQ - Packed Multiply of Unsigned 52-bit Unsigned Integers and Add High 52-bit Products to 64-bit Accumulators
Differential Revision: http://reviews.llvm.org/D16407
llvm-svn: 258680
This is a fix for https://llvm.org/bugs/show_bug.cgi?id=22796.
The previous implementation of ClassInfo::operator< allowed cycles of classes
such that x < y < z < x, meaning that a list of them cannot be correctly
sorted, and the sort order could differ with different standard libraries.
The original implementation sorted classes by ValueName if they were otherwise
equal. This isn't strictly necessary, but some backends seem to accidentally
rely on it. If I reverse this comparison I get 8 test failures spread across
the AArch64, Mips and X86 backends, so I have left it in until those backends
can be fixed.
There was one case in the X86 backend where the observable behaviour of the
assembler is changed by this patch. This was because some of the memory asm
operands were not marked as children of X86MemAsmOperand.
Differential Revision: http://reviews.llvm.org/D16141
llvm-svn: 258677
Use AVX1 FP instructions (vmaskmovps/pd) in place of the AVX2 int instructions (vpmaskmovd/q).
Differential Revision: http://reviews.llvm.org/D16528
llvm-svn: 258675
Changes in X86.td:
I set features of Intel processors in incremental form: IVB = SNB + X HSW = IVB + X ..
I added Skylake client processor and defined it's features
FeatureADX was missing on KNL
Added some new features to appropriate processors SMAP, IFMA, PREFETCHWT1, VMFUNC and others
Differential Revision: http://reviews.llvm.org/D16357
llvm-svn: 258659
Generalised mask generation / subvector extraction to use the input/output types directly instead of an if/else through all the currently accepted types.
llvm-svn: 258645
If the INSERTPS zeroes out all the referenced elements from either of the 2 input vectors (and the input is not already UNDEF), then set that input to UNDEF to reduce dependencies.
llvm-svn: 258622
Better handling of the annoying pshuflw/pshufhw ops which only shuffle lower/upper halves of a vector.
Added vXi16 unary shuffle support for cases where i16 elements (from the same half of the source) are being splatted to the whole of one of the halves. This avoids the general lowering case which must shuffle the 32-bit elements first - meaning that we used to end up with unnecessary duplicate pshuflw/pshufhw shuffles.
Note this has the side effect of a lot of SSSE3 test cases no longer needing to use PSHUFB, as it falls below the 3 op combine threshold for when PSHUFB is typically worth it. I've raised PR26183 to discuss if the threshold should be changed and whether we need to make it more specific to the target CPU.
Differential Revision: http://reviews.llvm.org/D14901
llvm-svn: 258440
There's an overloading of the "movsd" and "cmpsd" instructions, e.g. movsd can be either "Move Data from String to String" or "Move or Merge Scalar Double-Precision Floating-Point Value".
The former should produce warnings when parsing a memory operand that is not ESI/EDI, but the latter should not.
Fixed the code to produce warnings only after making sure we're dealing with the first case.
Expanded the tests of the produced warnings + fixed RUN line of the test so that it would check both stdout and stderr
Differential Revision: http://reviews.llvm.org/D16359
llvm-svn: 258393
There was a bug in my rL258132 because there's an overloading of the "movsd" and "cmpsd" instructions, e.g. movsd can be either "Move Data from String to String" (the case I wanted to handle) or "Move or Merge Scalar Double-Precision Floating-Point Value" (the case that causes the asserts).
Added code for escaping the unfamiliar scenarios and falling back to old behviour.
Also changed the asserts to llvm_unreachable.
llvm-svn: 258312
calling convention.
The implementation of the related callbacks in the x86 backend for such
functions are not ready to deal with a prologue block that is not the entry
block of the function.
This fixes PR26107, but the longer term solution would be to fix those callbacks.
llvm-svn: 258221
As vector shuffles can only reference two inputs many (V)INSERTPS patterns end up being split over two targets shuffles.
This patch adds combines to attempt to combine (V)INSERTPS nodes with input/output nodes that are just zeroing out these additional vector elements.
Differential Revision: http://reviews.llvm.org/D16072
llvm-svn: 258205
According to x86 spec "xlat m8" is a legal instruction and it is equivalent to "xlatb".
Differential Revision: http://reviews.llvm.org/D15150
llvm-svn: 258135
The following are legal according to X86 spec:
ins mem, DX
outs DX, mem
lods mem
stos mem
scas mem
cmps mem, mem
movs mem, mem
Differential Revision: http://reviews.llvm.org/D14827
llvm-svn: 258132
AVX2 can only broadcast from the zero'th element of a vector, but if the broadcastable element is the zero'th element of a 128-bit subvector its advantageous to extract the subvector, broadcast from that and avoid the loading of shuffle mask data that would be needed for VPERMPS/VPERMD. The only exception being when the source type is 4f64 or 4i64 which can directly use the immediate shuffle VPERMPD/VPERMQ directly.
Differential Revision: http://reviews.llvm.org/D16050
llvm-svn: 258081
The feature flag is for VPERMB,VPERMI2B,VPERMT2B and VPMULTISHIFTQB instructions.
More about the instruction can be found in:
hattps://software.intel.com/sites/default/files/managed/07/b7/319433-023.pdf
Differential Revision: http://reviews.llvm.org/D16190
llvm-svn: 258012
Added support for the extraction of the upper 128-bit subvectors for lower/upper half undef shuffles if it would reduce the number of extractions/insertions or avoid loads of AVX2 permps/permd shuffle masks.
Minor follow up to D15477.
llvm-svn: 258000
%RBP can't be handled explicitly. We generate the following code:
pushq %rbp
movq %rsp, %rbp
...
movq %rbx, (%rbp) ## 8-byte Spill
where %rbp will be overwritten by the spilled value.
The fix is to let PEI handle %RBP.
PR26136
llvm-svn: 257997
FIXME: Add more targets to use emutls into clang/test/Driver/emulated-tls.cpp.
FIXME: Add cygwin tests into llvm/test/CodeGen/X86. Working in progress.
llvm-svn: 257984
When we have a single basic block, the explicit copy-back instructions should
be inserted right before the terminator. Before this fix, they were wrongly
placed at the beginning of the basic block.
I will commit fixes to other platforms as well.
PR26136
llvm-svn: 257925
This method has no callers.
Also remove X86ELFRelocationInfo.cpp and X86MachORelocationInfo.cpp
which only existed to provide an implementation of that method.
Ok'd by Rafael and Jim.
llvm-svn: 257859
We rely on HasOpaqueSPAdjustment not changing after we've calculated
things based on it. Things like whether or not we can use 'rep;movs' to
copy bytes around, that sort of thing. If it changes, invariants in the
backend will quietly break. This situation arose when we had a call to
memcpy *and* a COPY of the FLAGS register where we would attempt to
reference local variables using %esi, a register that was clobbered by
the 'rep;movs'.
This fixes PR26124.
llvm-svn: 257730
Make x86 OptimizeLEAs pass remove LEA instruction if there is another LEA
(in the same basic block) which calculates address differing only be a
displacement. Works only for -Oz.
Differential Revision: http://reviews.llvm.org/D13295
llvm-svn: 257589
(64 to 128-bit) matches against the pattern fragment 'vzmovl_v2i64'
(a zero-extended 64-bit load).
However, a change in r248784 teaches the instruction combiner that only
the lower 64 bits of the input to a 128-bit vcvtph2ps are used. This means
the instruction combiner will ordinarily optimize away the upper 64-bit
insertelement instruction in the zero-extension and so we no longer select
the memory-register form. To fix this a new pattern has been added.
Differential Revision: http://reviews.llvm.org/D16067
llvm-svn: 257470
In the OptimizeLEA pass keep instructions' positions in the basic block saved and use them for calculation of the distance between two instructions instead of std::distance. This reduces complexity of the pass from O(n^3) to O(n^2) and thus the compile time.
Differential Revision: http://reviews.llvm.org/D15692
llvm-svn: 257328
AVX1 v8i32/v4i64 shuffles are bitcasted to v8f32/v4f64, this patch peeks through any bitcast to check for a load node to allow broadcasts to occur.
This is a re-commit of r257055 after r257264 fixed 32-bit broadcast loads of i64 scalars.
llvm-svn: 257266
AVX1 v8i32/v4i64 shuffles are bitcasted to v8f32/v4f64, this patch peeks through bitcasts to check for a load node to allow broadcasts to occur.
Follow up to D15310
llvm-svn: 257055
Follow up to D15378, added INSERTPS to the list of decodable target shuffles and enabled XFormVExtractWithShuffleIntoLoad to handle target shuffles with SentinelZero and tested this with INSERTPS.
llvm-svn: 257046
getTargetShuffleMask may return shuffle masks with SM_SentinelZero (-2) values (currently just for PSHUFB but VPERM2X128 as well with this patch). Although some calling functions can make use of this (mainly for shuffle combining), others can not and their inclusion makes shuffle mask comparisons more difficult.
This patch adds a flag to getTargetShuffleMask to indicate if the calling function can't handle SM_SentinelZero; getTargetShuffleMask will then return false if it occurs to make handling much easier.
I've tidied up some uses of getTargetShuffleMask to better indicate what is going on - more could be done but at present I don't have test cases to demonstrate it.
Some upcoming patches will make use of this to both support more uses where SM_SentinelZero is not permitted (e.g. combineShuffleToAddSub), and also will allow us to add INSERTPS support to getTargetShuffleMask as part of better zero handling discussed in D14261.
Differential Revision: http://reviews.llvm.org/D15378
llvm-svn: 256992
As discussed on D15378, move the mask.empty() tests to after the switch statement and consider any shuffle decode where the extracted target shuffle mask is empty as a failure.
llvm-svn: 256921
We queried hasFP before we hit ExpandISelPseudos. ExpandISelPseudos
manipulated state that hasFP relied on, potentially changing the result
after it has been queried elsewhere.
While I am not aware of any particular bug due to this state of affairs,
it seems best to avoid it entirely by changing the state during DAG
construction.
llvm-svn: 256849
PBLEND/BLENDPD/BLENDPS are no different to the other target shuffles and this will make future improvements to the target shuffle combines more straightforward.
llvm-svn: 256819
The red zone consists of 128 bytes beyond the stack pointer so that the
allocation of objects in leaf functions doesn't require decrementing
rsp. In r255656, we introduced an optimization that would cheaply
materialize certain constants via push/pop. Push decrements the stack
pointer and stores it's result at what is now the top of the stack.
However, this means that using push/pop would encroach on the red zone.
PR26023 gives an example where this corrupts an object in the red zone.
llvm-svn: 256808
Unfortunately this fix had the effect of exposing the
-verify-machineinstrs FIXME of X86InstrInfo.cpp in two testcases for
which I disabled it for now.
Two testcases also have additional pushq/popq where the corrected code
cannot prove that %rax is dead any longer. Looking at the examples, this
could potentially be fixed by improving computeRegisterLiveness() to check
the live-in lists of the successors blocks when reaching the end of a
block.
This fixes http://llvm.org/PR25951.
llvm-svn: 256799
We need a frame pointer if there is a push/pop sequence after the
prologue in order to unwind the stack. Scanning the instructions to
figure out if this happened made hasFP not constant-time which is a
violation of expectations. Let's compute this up-front and reuse that
computation when we need it.
llvm-svn: 256730
Summary:
There are a number of files in the tree which have been accidentally checked in with DOS line endings. Convert these to native line endings.
There are also a few files which have DOS line endings on purpose, and I have set the svn:eol-style property to 'CRLF' on those.
Reviewers: joerg, aaron.ballman
Subscribers: aaron.ballman, sanjoy, dsanders, llvm-commits
Differential Revision: http://reviews.llvm.org/D15848
llvm-svn: 256707
LLVM's targets need to know if stack pointer adjustments occur after the
prologue. This is needed to correctly determine if the red-zone is
appropriate to use or if a frame pointer is required.
Normally, LLVM can figure this out very precisely by reasoning about the
contents of the MachineFunction. There is an interesting corner case:
inline assembly.
The vast majority of inline assembly which will perform a push or pop is
done so to pair up with pushf or popf as appropriate. Unfortunately,
this inline assembly doesn't mark the stack pointer as clobbered
because, well, it isn't. The stack pointer is decremented and then
immediately incremented. Because of this, LLVM was changed in r256456
to conservatively assume that inline assembly contain a sequence of
stack operations. This is unfortunate because the vast majority of
inline assembly will not end up manipulating the stack pointer in any
way at all.
Instead, let's provide a more principled solution: an intrinsic.
FWIW, other compilers (MSVC and GCC among them) also provide this
functionality as an intrinsic.
llvm-svn: 256685
Not folding these cases tends to avoid partial register updates:
sqrtss (%eax), %xmm0
Has a partial update of %xmm0, while
movss (%eax), %xmm0
sqrtss %xmm0, %xmm0
Has a clobber of the high lanes immediately before the partial update,
avoiding a potential stall.
Given this, we only want to fold when optimizing for size.
This is consistent with the patterns we already have for some of
the fp/int converts, and in X86InstrInfo::foldMemoryOperandImpl()
Differential Revision: http://reviews.llvm.org/D15741
llvm-svn: 256671
The cost is calculated for all X86 targets. When gather/scatter instruction
is not supported we calculate the cost of scalar sequence.
Differential revision: http://reviews.llvm.org/D15677
llvm-svn: 256519
This adds support for the MCU psABI in a way different from r251223 and r251224,
basically reverting most of these two patches. The problem with the approach
taken in r251223/4 is that it only handled libcalls that originated from the backend.
However, the mid-end also inserts quite a few libcalls and assumes these use the
platform's default calling convention.
The previous patch tried to insert inregs when necessary both in the FE and,
somewhat hackily, in the CG. Instead, we now define a new default calling convention
for the MCU, which doesn't use inreg marking at all, similarly to what x86-64 does.
Differential Revision: http://reviews.llvm.org/D15054
llvm-svn: 256494
lower broadcast<type>x<vector> to shuffles.
there are two cases:
1.src is 128 bits and dest is 512 bits: in this case we will lower it to shuffle with imm = 0.
2.src is 256 bit and dest is 512 bits: in this case we will lower it to shuffle with imm = 01000100b (0x44) that way we will broadcast the 256bit source: ymm[0,1,2,3] => zmm[0,1,2,3,0,1,2,3] then it will mask it with the passthru value (in case it's mask op).
Differential Revision: http://reviews.llvm.org/D15790
llvm-svn: 256490
I believe this also fixes a case where a 64-bit memory form that is documented as being unsupported in 32-bit mode was able to be selected there.
llvm-svn: 256483
Fix TRUNCATE lowering vector to vector i1, use LSB and not MSB.
Implement VPMOVB/W/D/Q2M intrinsic.
Differential Revision: http://reviews.llvm.org/D15675
llvm-svn: 256470
A frame pointer must be used if stack pointer is modified after the
prologue. LLVM will emit pushf/popf if we need to save/restore the
FLAGS register, requiring us to have a frame pointer for the function.
There is a small twist: this sequence might exist in user code via
inline-assembly. For now, conservatively assume that such functions
require a frame pointer. For real world justification, please see
clang's implementation of __readeflags.
This fixes PR25945.
llvm-svn: 256456
The patterns that set a mask register to 0/1
KXOR %kn, %kn, %kn / KXNOR %kn, %kn, %kn
are replaced with
KXOR %k0, %k0, %kn / KXNOR %k0, %k0, %kn - AVX-512 targets optimization.
KNL does not recognize dependency-breaking idioms for mask registers,
so kxnor %k1, %k1, %k2 has a RAW dependence on %k1.
Using %k0 as the undef input register is a performance heuristic based
on the assumption that %k0 is used less frequently than the other mask
registers, since it is not usable as a write mask.
Differential Revision: http://reviews.llvm.org/D15739
llvm-svn: 256365
First step towards making better use of AVX's implicit zeroing of the upper half of a 256-bit vector by instructions that only act on the lower 128-bit vector - discussed on D14151.
As well as the fact that 128-bit shuffle instructions are generally more capable, this can be performant for older CPUs with 128-bit ALUs (e.g. Jaguar, Sandy Bridge) that must treat 256-bit vectors as multiple micro-ops.
Moved the similar subvector extraction shuffle combines from PerformShuffleCombine256 to lowerVectorShuffle as well.
Note: I've avoided combining shuffles that reference elements from the upper halves of the input vectors - this may be reviewed in future work as well (AVX1 would probably always gain, but AVX2 does have some cross-lane shuffle instructions).
Differential Revision: http://reviews.llvm.org/D15477
llvm-svn: 256332
Today, we always take into account the possibility that object files
produced by MC may be consumed by an incremental linker. This results
in us initialing fields which vary with time (TimeDateStamp) which harms
hermetic builds (e.g. verifying a self-host went well) and produces
sub-optimal code because we cannot assume anything about the relative
position of functions within a section (call sites can get redirected
through incremental linker thunks).
Let's provide an MCTargetOption which controls this behavior so that we
can disable this functionality if we know a-priori that the build will
not rely on /incremental.
llvm-svn: 256203
This patch transforms truncation between vectors of integers into
X86ISD::PACKUS/PACKSS operations during DAG combine. We don't do it in
lowering phase because after type legalization, the original truncation
will be turned into a BUILD_VECTOR with each element that is extracted
from a vector and then truncated, and from them it is difficult to do
this optimization. This greatly improves the performance of truncations
on some specific types.
Cost table is updated accordingly.
Differential revision: http://reviews.llvm.org/D14588
llvm-svn: 256194
It resolves clang selfhosting with std::once() for Cygwin.
FIXME: It may be EmulatedTLS-generic also for X86-Android.
FIXME: Pass EmulatedTLS to LLVM CodeGen from Clang with -femulated-tls.
llvm-svn: 256134
This allows "icmp ugt %a, 4294967295" and "icmp uge %a, 4294967296" to be optimized into right shifts by 32 which can fold the immediate into the shift instruction. These patterns show up with some regularity in real code.
Unfortunately, since getImmCost can't see the icmp predicate we can't be tell if we're only catching these specific cases.
llvm-svn: 256126
Use the 3-byte (4 with REX prefix) push-pop sequence for materializing
small constants. This is smaller than using a mov (5, 6 or 7 bytes
depending on size and REX prefix), but it's likely to be slower, so
only used for 'minsize'.
This is a follow-up to r255656.
Differential Revision: http://reviews.llvm.org/D15549
llvm-svn: 255936
Add option to enable/disable LEA optimization pass. By default the pass is disabled.
Differential Revision: http://reviews.llvm.org/D15573
llvm-svn: 255881
This folds (ashr (shl a, [56,48,32,24,16]), SarConst)
into (shl, (sext (a), [56,48,32,24,16] - SarConst))
or into (lshr, (sext (a), SarConst - [56,48,32,24,16]))
depending on sign of (SarConst - [56,48,32,24,16])
sexts in X86 are MOVs.
The MOVs have the same code size as above SHIFTs (only SHIFT by 1 has lower code size).
However the MOVs have 2 advantages to SHIFTs on x86:
1. MOVs can write to a register that differs from source.
2. MOVs accept memory operands.
This fixes PR24373.
Patch by: evgeny.v.stupachenko@intel.com
Differential Revision: http://reviews.llvm.org/D13161
llvm-svn: 255761
It adjusts from RSP-after-prologue to RBP, which is what SEH filters
need to do before they can use llvm.localrecover.
Fixes SEH filter captures, which were broken in r250088.
Issue reported by Alex Crichton.
llvm-svn: 255707
This patch improves on the suggested codegen from PR24475:
https://llvm.org/bugs/show_bug.cgi?id=24475
but only for the fmaxf() case to start, so we can sort out any bugs before
extending to fmin, f64, and vectors.
The fmax / maxnum definitions provide us flexibility for signed zeros, so the
only thing we have to worry about in this replacement sequence is NaN handling.
Note 1: It may be better to implement this as lowerFMAXNUM(), but that exposes
a problem: SelectionDAGBuilder::visitSelect() transforms compare/select
instructions into FMAXNUM nodes if we declare FMAXNUM legal or custom. Perhaps
that should be checking for NaN inputs or global unsafe-math before transforming?
As it stands, that bypasses a big set of optimizations that the x86 backend
already has in PerformSELECTCombine().
Note 2: The v2f32 test reveals another bug; the vector is extended to v4f32, so
we have completely unnecessary operations happening on undef elements of the
vector.
Differential Revision: http://reviews.llvm.org/D15294
llvm-svn: 255700
We only want to emit CFI adjustments when actually using DWARF.
This fixes PR25828.
Differential Revision: http://reviews.llvm.org/D15522
llvm-svn: 255664
"movl $-1, %eax" is 5 bytes, "xorl %eax, %eax; decl %eax" is 3 bytes.
This commit makes LLVM use the latter when optimizing for size.
Differential Revision: http://reviews.llvm.org/D14971
llvm-svn: 255656
the feature flag is essential for RDPKRU and WRPKRU instruction
more about the instruction can be found in the SDM rev 56, vol 2 from http://www.intel.com/sdm
Differential Revision: http://reviews.llvm.org/D15491
llvm-svn: 255644
Full type legalizer that works with all vectors length - from 2 to 16, (i32, i64, float, double).
This intrinsic, for example
void @llvm.masked.scatter.v2f32(<2 x float>%data , <2 x float*>%ptrs , i32 align , <2 x i1>%mask )
requires type widening for data and type promotion for mask.
Differential Revision: http://reviews.llvm.org/D13633
llvm-svn: 255629
Prior to this patch, we would wrongly stick to the variant with imm8 encoding
even when the relocation could not fit that size.
rdar://problem/23785506
llvm-svn: 255583
Prior to this patch, we would wrongly stick to the variant with imm8 encoding
even when the relocation could not fit that size.
rdar://problem/23785506
llvm-svn: 255570
Part 1 was submitted in http://reviews.llvm.org/D15134.
Changes in this part:
* X86RegisterInfo.td, X86RecognizableInstr.cpp: Add FR128 register class.
* X86CallingConv.td: Pass f128 values in XMM registers or on stack.
* X86InstrCompiler.td, X86InstrInfo.td, X86InstrSSE.td:
Add instruction selection patterns for f128.
* X86ISelLowering.cpp:
When target has MMX registers, configure MVT::f128 in FR128RegClass,
with TypeSoftenFloat action, and custom actions for some opcodes.
Add missed cases of MVT::f128 in places that handle f32, f64, or vector types.
Add TODO comment to support f128 type in inline assembly code.
* SelectionDAGBuilder.cpp:
Fix infinite loop when f128 type can have
VT == TLI.getTypeToTransformTo(Ctx, VT).
* Add unit tests for x86-64 fp128 type.
Differential Revision: http://reviews.llvm.org/D11438
llvm-svn: 255558
The .even directive aligns content to an evan-numbered address.
In at&t syntax .even
In Microsoft syntax even (without the dot).
Differential Revision: http://reviews.llvm.org/D15413
llvm-svn: 255462
While we have successfully implemented a funclet-oriented EH scheme on
top of LLVM IR, our scheme has some notable deficiencies:
- catchendpad and cleanupendpad are necessary in the current design
but they are difficult to explain to others, even to seasoned LLVM
experts.
- catchendpad and cleanupendpad are optimization barriers. They cannot
be split and force all potentially throwing call-sites to be invokes.
This has a noticable effect on the quality of our code generation.
- catchpad, while similar in some aspects to invoke, is fairly awkward.
It is unsplittable, starts a funclet, and has control flow to other
funclets.
- The nesting relationship between funclets is currently a property of
control flow edges. Because of this, we are forced to carefully
analyze the flow graph to see if there might potentially exist illegal
nesting among funclets. While we have logic to clone funclets when
they are illegally nested, it would be nicer if we had a
representation which forbade them upfront.
Let's clean this up a bit by doing the following:
- Instead, make catchpad more like cleanuppad and landingpad: no control
flow, just a bunch of simple operands; catchpad would be splittable.
- Introduce catchswitch, a control flow instruction designed to model
the constraints of funclet oriented EH.
- Make funclet scoping explicit by having funclet instructions consume
the token produced by the funclet which contains them.
- Remove catchendpad and cleanupendpad. Their presence can be inferred
implicitly using coloring information.
N.B. The state numbering code for the CLR has been updated but the
veracity of it's output cannot be spoken for. An expert should take a
look to make sure the results are reasonable.
Reviewers: rnk, JosephTremoulet, andrew.w.kaylor
Differential Revision: http://reviews.llvm.org/D15139
llvm-svn: 255422
Summary: This patch adds support of conversion (mul x, 2^N + 1) => (add (shl x, N), x) and (mul x, 2^N - 1) => (sub (shl x, N), x) if the multiplication can not be converted to LEA + SHL or LEA + LEA. LLVM has already supported this on ARM, and it should also be useful on X86. Note the patch currently only applies to cases where the constant operand is positive, and I am planing to add another patch to support negative cases after this.
Reviewers: craig.topper, RKSimon
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D14603
llvm-svn: 255415
Summary: This patch adds support of conversion (mul x, 2^N + 1) => (add (shl x, N), x) and (mul x, 2^N - 1) => (sub (shl x, N), x) if the multiplication can not be converted to LEA + SHL or LEA + LEA. LLVM has already supported this on ARM, and it should also be useful on X86. Note the patch currently only applies to cases where the constant operand is positive, and I am planing to add another patch to support negative cases after this.
Reviewers: craig.topper, RKSimon
Subscribers: aemerson, llvm-commits
Differential Revision: http://reviews.llvm.org/D14603
llvm-svn: 255391
computeRegisterLiveness() was broken in that it reported dead for a
register even if a subregister was alive. I assume this was because the
results of analayzePhysRegs() are hard to understand with respect to
subregisters.
This commit: Changes the results of analyzePhysRegs (=struct
PhysRegInfo) to be clearly understandable, also renames the fields to
avoid silent breakage of third-party code (and improve the grammar).
Fix all (two) users of computeRegisterLiveness() in llvm: By reenabling
it and removing workarounds for the bug.
This fixes http://llvm.org/PR24535 and http://llvm.org/PR25033
Differential Revision: http://reviews.llvm.org/D15320
llvm-svn: 255362
These are redundant pairs of nodes defined for
INSERT_VECTOR_ELEMENT/EXTRACT_VECTOR_ELEMENT.
insertelement/extractelement are slightly closer to the corresponding
C++ node name, and has stricter type checking so prefer it.
Update targets to only use these nodes where it is trivial to do so.
AArch64, ARM, and Mips all have various type errors on simple replacement,
so they will need work to fix.
Example from AArch64:
def : Pat<(sext_inreg (vector_extract (v16i8 V128:$Rn), VectorIndexB:$idx), i8),
(i32 (SMOVvi8to32 V128:$Rn, VectorIndexB:$idx))>;
Which is trying to do sext_inreg i8, i8.
llvm-svn: 255359
Previously in the conversion cost table there are no entries for integer-integer
conversions on SSE2. This will result in imprecise costs for certain vectorized
operations. This patch adds those entries for SSE2 and SSE4.1. The cost numbers
are counted from the result of running llc on the new test case in this patch.
Differential revision: http://reviews.llvm.org/D15132
llvm-svn: 255315
without a frame pointer when unwind may happen.
This is a workaround for a bug in the way we emit the CFI directives for
frameless unwind information. See PR25614.
llvm-svn: 255175
On AVX and AVX2, BROADCAST instructions can load a scalar into all elements of a target vector.
This patch improves the lowering of 'splat' shuffles of a loaded vector into a broadcast - currently the lowering only works for cases where we are splatting the zero'th element, which is now generalised to any element.
Fix for PR23022
Differential Revision: http://reviews.llvm.org/D15310
llvm-svn: 255061
FP logic instructions are supported in DQ extension on AVX-512 target.
I use integer operations instead.
Added tests.
I also enabled FABS in this patch in order to check ANDPS.
The operations are FOR, FXOR, FAND, FANDN.
The instructions, that supported for 512-bit vector under DQ are:
VORPS/PD, VXORPS/PD, VANDPS/PD, FANDNPS/PD.
Differential Revision: http://reviews.llvm.org/D15110
llvm-svn: 254913
Patterns were missing for KNL target for <8 x i32>, <8 x float> masked load/store.
This intrinsic comes with all legal types:
<8 x float> @llvm.masked.load.v8f32(<8 x float>* %addr, i32 align, <8 x i1> %mask, <8 x float> %passThru),
but still requires lowering, because VMASKMOVPS, VMASKMOVDQU32 work with 512-bit vectors only.
All data operands should be widened to 512-bit vector.
The mask operand should be widened to v16i1 with zeroes.
Differential Revision: http://reviews.llvm.org/D15265
llvm-svn: 254909
According to x86 spec, loopz and loopnz should be supported for Intel syntax, where loopz is equivalent to loope and loopnz is equivalent to loopne.
Differential Revision: http://reviews.llvm.org/D15148
llvm-svn: 254877
This removes the code path that generate "synchronous" (only correct at call site) CFA.
We will probably want to re-introduce it once we are capable of emitting different
.eh_frame and .debug_frame sections.
Differential Revision: http://reviews.llvm.org/D14948
llvm-svn: 254874