process up to a higher level. This allows FastISel to leverage
more of SelectionDAGISel's infastructure, such as updating Machine
PHI nodes.
Also, implement transitioning from SDISel back to FastISel in
the middle of a block, so it's now possible to go back and
forth. This allows FastISel to hand individual CallInsts and other
complicated things off to SDISel to handle, while handling the rest
of the block itself.
To help support this, reorganize the SelectionDAG class so that it
is allocated once and reused throughout a function, instead of
being completely reallocated for each block.
llvm-svn: 55219
replacement of multiple values. This is slightly more efficient
than doing multiple ReplaceAllUsesOfValueWith calls, and theoretically
could be optimized even further. However, an important property of this
new function is that it handles the case where the source value set and
destination value set overlap. This makes it feasible for isel to use
SelectNodeTo in many very common cases, which is advantageous because
SelectNodeTo avoids a temporary node and it doesn't require CSEMap
updates for users of values that don't change position.
Revamp MorphNodeTo, which is what does all the work of SelectNodeTo, to
handle operand lists more efficiently, and to correctly handle a number
of corner cases to which its new wider use exposes it.
This commit also includes a change to the encoding of post-isel opcodes
in SDNodes; now instead of being sandwiched between the target-independent
pre-isel opcodes and the target-dependent pre-isel opcodes, post-isel
opcodes are now represented as negative values. This makes it possible
to test if an opcode is pre-isel or post-isel without having to know
the size of the current target's post-isel instruction set.
These changes speed up llc overall by 3% and reduce memory usage by 10%
on the InstructionCombining.cpp testcase with -fast and -regalloc=local.
llvm-svn: 53728
the return value is zero-extended if it isn't
sign-extended. It may also be any-extended.
Also, if a floating point value was returned
in a larger floating point type, pass 1 as the
second operand to FP_ROUND, which tells it
that all the precision is in the original type.
I think this is right but I could be wrong.
Finally, when doing libcalls, set isZExt on
a parameter if it is "unsigned". Currently
isSExt is set when signed, and nothing is
set otherwise. This should be right for all
calls to standard library routines.
llvm-svn: 47122
1) ConstantFP is now expand by default
2) ConstantFP is not turned into TargetConstantFP during Legalize
if it is legal.
This allows ConstantFP to be handled like Constant, allowing for
targets that can encode FP immediates as MachineOperands.
As a bonus, fix up Itanium FP constants, which now correctly match,
and match more constants! Hooray.
llvm-svn: 47121
initializer problem, a minor tweak to the way the
DAGISelEmitter finds load/store nodes, and a renaming of the
new PseudoSourceValue objects.
llvm-svn: 46827
Added ISD::DECLARE node type to represent llvm.dbg.declare intrinsic. Now the intrinsic calls are lowered into a SDNode and lives on through out the codegen passes.
For now, since all the debugging information recording is done at isel time, when a ISD::DECLARE node is selected, it has the side effect of also recording the variable. This is a short term solution that should be fixed in time.
llvm-svn: 46659
in the backend. Introduce a new SDNode type, MemOperandSDNode, for
holding a MemOperand in the SelectionDAG IR, and add a MemOperand
list to MachineInstr, and code to manage them. Remove the offset
field from SrcValueSDNode; uses of SrcValueSDNode that were using
it are all all using MemOperandSDNode now.
Also, begin updating some getLoad and getStore calls to use the
PseudoSourceValue objects.
Most of this was written by Florian Brander, some
reorganization and updating to TOT by me.
llvm-svn: 46585
precision integers. This won't actually work
(and most of the code is dead) unless the new
legalization machinery is turned on. While
there, I rationalized the handling of i1, and
removed some bogus (and unused) sextload patterns.
For i1, this could result in microscopically
better code for some architectures (not X86).
It might also result in worse code if annotating
with AssertZExt nodes turns out to be more harmful
than helpful.
llvm-svn: 46280
that "machine" classes are used to represent the current state of
the code being compiled. Given this expanded name, we can start
moving other stuff into it. For now, move the UsedPhysRegs and
LiveIn/LoveOuts vectors from MachineFunction into it.
Update all the clients to match.
This also reduces some needless #includes, such as MachineModuleInfo
from MachineFunction.
llvm-svn: 45467
adjustment fields, and an optional flag. If there is a "dynamic_stackalloc" in
the code, make sure that it's bracketed by CALLSEQ_START and CALLSEQ_END. If
not, then there is the potential for the stack to be changed while the stack's
being used by another instruction (like a call).
This can only result in tears...
llvm-svn: 44037
TargetLowering to SelectionDAG so that they have more convenient
access to the current DAG, in preparation for the ValueType routines
being changed from standalone functions to members of SelectionDAG for
the pre-legalize vector type changes.
llvm-svn: 37704
Three changes:
1. Convert signed integer types to signless versions.
2. Implement the @sext and @zext parameter attributes. Previously the
type of an function parameter was used to determine whether it should
be sign extended or zero extended before the call. This information is
now communicated via the function type's parameter attributes.
3. The interface to LowerCallTo had to be changed in order to accommodate
the parameter attribute information. Although it would have been
convenient to pass in the FunctionType itself, there isn't always one
present in the caller. Consequently, a signedness indication for the
result type and for each parameter was provided for in the interface
to this method. All implementations were changed to make the adjustment
necessary.
llvm-svn: 32788
in the start of an array and a count of operands where applicable. In many
cases, the number of operands is known, so this static array can be allocated
on the stack, avoiding the heap. In many other cases, a SmallVector can be
used, which has the same benefit in the common cases.
I updated a lot of code calling getNode that takes a vector, but ran out of
time. The rest of the code should be updated, and these methods should be
removed.
We should also do the same thing to eliminate the methods that take a
vector of MVT::ValueTypes.
It would be extra nice to convert the dagiselemitter to avoid creating vectors
for operands when calling getTargetNode.
llvm-svn: 29566
x86 and ppc for 100% dense switch statements when relocations are non-PIC.
This support will be extended and enhanced in the coming days to support
PIC, and less dense forms of jump tables.
llvm-svn: 27947
manner that the LowerSwitch LLVM to LLVM pass does: emitting a binary
search tree of basic blocks. The new approach has several advantages:
it is faster, it generates significantly smaller code in many cases, and
it paves the way for implementing dense switch tables as a jump table by
handling switches directly in the instruction selector.
This functionality is currently only enabled on x86, but should be safe for
every target. In anticipation of making it the default, the cfg is now
properly updated in the x86, ppc, and sparc select lowering code.
llvm-svn: 27156
Make the PPC backend not dependent on BRTWOWAY_CC and make the branch
selector smarter about the code it generates, fixing a case in the
readme.
llvm-svn: 26814
The ABI specifies that there is a register save area at the bottom of the
stack, which means the actual used pointer needs to be an offset from
the subtracted value.
llvm-svn: 26202