Clang will now honor the FP_CONTRACT pragma and emit LLVM
fmuladd intrinsics for expressions of the form A * B + C (when they occur in a
single statement).
llvm-svn: 164989
typeid (and a couple other non-standard places where we can transform an
unevaluated expression into an evaluated expression) is special
because it introduces an an expression evaluation context,
which conflicts with the mechanism to compute the current
lambda mangling context. PR12123.
I would appreciate if someone would double-check that we get the mangling
correct with this patch.
llvm-svn: 164658
enough information so we can mangle them correctly in cases involving
dependent parameter types. (This specifically impacts cases involving
null pointers and cases involving parameters of reference type.)
Fix the mangler to use this information instead of trying to scavenge
it out of the parameter declaration.
<rdar://problem/12296776>.
llvm-svn: 164656
but can be dereferenced to form an expression which does have viable begin/end
functions, then typo-correct the range, even if something else goes wrong with
the statement (such as inaccessible begin/end or the wrong type of loop
variable).
In order to ensure we recover correctly and produce any followup diagnostics in
this case, redo semantic analysis on the for-range statement outside of the
diagnostic trap, after issuing the typo-correction.
llvm-svn: 164323
definition info; it needs to be there because the mangler needs to
access it before we're finished defining the lambda class.
PR12808.
llvm-svn: 164186
(__builtin_* etc.) so that it isn't possible to take their address.
Specifically, introduce a new type to represent a reference to a builtin
function, and a new cast kind to convert it to a function pointer in the
operand of a call. Fixes PR13195.
llvm-svn: 162962
The old error message stating that 'begin' was an undeclared identifier
is replaced with a new message explaining that the error is in the range
expression, along with which of the begin() and end() functions was
problematic if relevant.
Additionally, if the range was a pointer type or defines operator*,
attempt to dereference the range, and offer a FixIt if the modified range
works.
llvm-svn: 162248
Rather than adding a ContainsUnexpandedParameterPack bit to essentially every
AST node, we tunnel the bit directly up to the surrounding lambda expression
when we reach a context where an unexpanded pack can not normally appear.
Thus any statement or declaration within a lambda can now potentially contain
an unexpanded parameter pack.
llvm-svn: 160705
change once it's been assigned. It can change in two ways:
1) In a template instantiation, the context declaration should be the
instantiated declaration, not the declaration in the template.
2) If a lambda appears in the pattern of a variadic pack expansion, the
mangling number will depend on the pack length.
llvm-svn: 160614
* Removed \param comments for parameters that no longer exist;
* Fixed a "\para" typo to "\param";
* Escaped @, # and \ symbols as needed in Doxygen comments;
* Added use of \brief to output short summaries.
llvm-svn: 158498
We have a new flavor of exception specification, EST_Uninstantiated. A function
type with this exception specification carries a pointer to a FunctionDecl, and
the exception specification for that FunctionDecl is instantiated (if needed)
and used in the place of the function type's exception specification.
When a function template declaration with a non-trivial exception specification
is instantiated, the specialization's exception specification is set to this
new 'uninstantiated' kind rather than being instantiated immediately.
Expr::CanThrow has migrated onto Sema, so it can instantiate exception specs
on-demand. Also, any odr-use of a function triggers the instantiation of its
exception specification (the exception specification could be needed by IRGen).
In passing, fix two places where a DeclRefExpr was created but the corresponding
function was not actually marked odr-used. We used to get away with this, but
don't any more.
Also fix a bug where instantiating an exception specification which refers to
function parameters resulted in a crash. We still have the same bug in default
arguments, which I'll be looking into next.
This, plus a tiny patch to fix libstdc++'s common_type, is enough for clang to
parse (and, in very limited testing, support) all of libstdc++4.7's standard
headers.
llvm-svn: 154886
in the declaration of a non-static member function after the
(optional) cv-qualifier-seq, which in practice means in the exception
specification and late-specified return type.
The new scheme here used to manage 'this' outside of a member function
scope is more general than the Scope-based mechanism previously used
for non-static data member initializers and late-parsesd attributes,
because it can also handle the cv-qualifiers on the member
function. Note, however, that a separate pass is required for static
member functions to determine whether 'this' was used, because we
might not know that we have a static function until after declaration
matching.
Finally, this introduces name mangling for 'this' and for the implicit
'this', which is intended to match GCC's mangling. Independent
verification for the new mangling test case would be appreciated.
Fixes PR10036 and PR12450.
llvm-svn: 154799
attached. Since we do not support any attributes which appertain to a statement
(yet), testing of this is necessarily quite minimal.
Patch by Alexander Kornienko!
llvm-svn: 154723
the template instantiation of statement-expressions.
I think it was jyasskin who had a crashing testcase in this area;
hopefully this fixes it and he can find his testcase and check it in.
llvm-svn: 154189
number + context) to the point where we initially start defining the
lambda, so that the linkage won't change when that information is made
available. Fixes the assertion in <rdar://problem/11182962>.
Plus, actually mangle the context of lambdas properly.
llvm-svn: 154029
track whether the referenced declaration comes from an enclosing
local context. I'm amenable to suggestions about the exact meaning
of this bit.
llvm-svn: 152491
analysis to make the AST representation testable. They are represented by a
new UserDefinedLiteral AST node, which is a sugared CallExpr. All semantic
properties, including full CodeGen support, are achieved for free by this
representation.
UserDefinedLiterals can never be dependent, so no custom instantiation
behavior is required. They are mangled as if they were direct calls to the
underlying literal operator. This matches g++'s apparent behavior (but not its
actual mangling, which is broken for literal-operator-ids).
User-defined *string* literals are now fully-operational, but the semantic
analysis is quite hacky and needs more work. No other forms of user-defined
literal are created yet, but the AST support for them is present.
This patch committed after midnight because we had already hit the quota for
new kinds of literal yesterday.
llvm-svn: 152211
NSNumber, and boolean literals. This includes both Sema and Codegen support.
Included is also support for new Objective-C container subscripting.
My apologies for the large patch. It was very difficult to break apart.
The patch introduces changes to the driver as well to cause clang to link
in additional runtime support when needed to support the new language features.
Docs are forthcoming to document the implementation and behavior of these features.
llvm-svn: 152137
- Make sure that the block expression is instantiation-dependent if the
block is in a dependent context
- Make sure that the C++ 'this' expression gets captured even if we
don't rebuild the AST node during template instantiation. This would
also have manifested as a bug for lambdas.
Fixes <rdar://problem/10832617>.
llvm-svn: 151372
that provides the behavior of the C++11 library trait
std::is_trivially_constructible<T, Args...>, which can't be
implemented purely as a library.
Since __is_trivially_constructible can have zero or more arguments, I
needed to add Yet Another Type Trait Expression Class, this one
handling arbitrary arguments. The next step will be to migrate
UnaryTypeTrait and BinaryTypeTrait over to this new, more general
TypeTrait class.
Fixes the Clang side of <rdar://problem/10895483> / PR12038.
llvm-svn: 151352
function call (or a comma expression with a function call on its right-hand
side), possibly parenthesized, then the return type is not required to be
complete and a temporary is not bound. Other subexpressions inside a decltype
expression do not get this treatment.
This is implemented by deferring the relevant checks for all calls immediately
within a decltype expression, then, when the expression is fully-parsed,
checking the relevant constraints and stripping off any top-level temporary
binding.
Deferring the completion of the return type exposed a bug in overload
resolution where completion of the argument types was not attempted, which
is also fixed by this change.
llvm-svn: 151117
default arguments of function parameters. This simple-sounding task is
complicated greatly by two issues:
(1) Default arguments aren't actually a real context, so we need to
maintain extra state within lambda expressions to track when a
lambda was actually in a default argument.
(2) At the time that we parse a default argument, the FunctionDecl
doesn't exist yet, so lambda closure types end up in the enclosing
context. It's not clear that we ever want to change that, so instead
we introduce the notion of the "effective" context of a declaration
for the purposes of name mangling.
llvm-svn: 151011
name mangling in the Itanium C++ ABI for lambda expressions is so
dependent on context, we encode the number used to encode each lambda
as part of the lambda closure type, and maintain this value within
Sema.
Note that there are a several pieces still missing:
- We still get the linkage of lambda expressions wrong
- We aren't properly numbering or mangling lambda expressions that
occur in default function arguments or in data member initializers.
- We aren't (de-)serializing the lambda numbering tables
llvm-svn: 150982
eliminating a bunch of redundant code and properly modeling how the
captures of outside blocks/lambdas affect the types seen by inner
captures.
This new scheme makes two passes over the capturing scope stack. The
first pass goes up the stack (from innermost to outermost), assessing
whether the capture looks feasible and stopping when it either hits
the scope where the variable is declared or when it finds an existing
capture. The second pass then walks down the stack (from outermost to
innermost), capturing the variable at each step and updating the
captured type and the type that an expression referring to that
captured variable would see. It also checks type-specific
restrictions, such as the inability to capture an array within a
block. Note that only the first odr-use of each
variable needs to do the full walk; subsequent uses will find the
capture immediately, so multiple walks need not occur.
The same routine that builds the captures can also compute the type of
the captures without signaling errors and without actually performing
the capture. This functionality is used to determine the type of
declaration references as well as implementing the weird decltype((x))
rule within lambda expressions.
The capture code now explicitly takes sides in the debate over C++
core issue 1249, which concerns the type of captures within nested
lambdas. We opt to use the more permissive, more useful definition
implemented by GCC rather than the one implemented by EDG.
llvm-svn: 150875
Holding the constructor directly makes no sense when list-initialized arrays come into play. The constructor is now held in a CXXConstructExpr, if construction is what is done. The new design can also distinguish properly between list-initialization and direct-initialization, as well as implicit default-initialization constructors and explicit value-initialization constructors. Finally, doing it this way removes redundance from the AST because CXXNewExpr doesn't try to handle both the allocation and the initialization responsibilities.
This breaks the static analysis of new expressions. I've filed PR12014 to track this.
llvm-svn: 150682
lambda expressions. Because these issue was pulled back from Ready
status at the Kona meeting, we still emit an ExtWarn when using
default arguments for lambda expressions.
llvm-svn: 150519
* if, switch, range-based for: warn if semicolon is on the same line.
* for, while: warn if semicolon is on the same line and either next
statement is compound statement or next statement has more
indentation.
Replacing the semicolon with {} or moving the semicolon to the next
line will always silence the warning.
Tests from SemaCXX/if-empty-body.cpp merged into SemaCXX/warn-empty-body.cpp.
llvm-svn: 150515
expression with the original call operator, so that we don't try to
separately instantiate the call operator. Test and tweak a few more
bits for template instantiation of lambda expressions.
llvm-svn: 150440
expressions. This is mostly a simple refact, splitting the main "start
a lambda expression" function into smaller chunks that are driven
either from the parser (Sema::ActOnLambdaExpr) or during AST
transformation (TreeTransform::TransformLambdaExpr). A few minor
interesting points:
- Added new entry points for TreeTransform, so that we can
explicitly establish the link between the lambda closure type in the
template and the lambda closure type in the instantiation.
- Added a bit into LambdaExpr specifying whether it had an explicit
result type or not. We should have had this anyway.
This code is 'lightly' tested.
llvm-svn: 150417
instead of having a special-purpose function.
- ActOnCXXDirectInitializer, which was mostly duplication of
AddInitializerToDecl (leading e.g. to PR10620, which Eli fixed a few days
ago), is dropped completely.
- MultiInitializer, which was an ugly hack I added, is dropped again.
- We now have the infrastructure in place to distinguish between
int x = {1};
int x({1});
int x{1};
-- VarDecl now has getInitStyle(), which indicates which of the above was used.
-- CXXConstructExpr now has a flag to indicate that it represents list-
initialization, although this is not yet used.
- InstantiateInitializer was renamed to SubstInitializer and simplified.
- ActOnParenOrParenListExpr has been replaced by ActOnParenListExpr, which
always produces a ParenListExpr. Placed that so far failed to convert that
back to a ParenExpr containing comma operators have been fixed. I'm pretty
sure I could have made a crashing test case before this.
The end result is a (I hope) considerably cleaner design of initializers.
More importantly, the fact that I can now distinguish between the various
initialization kinds means that I can get the tricky generalized initializer
test cases Johannes Schaub supplied to work. (This is not yet done.)
This commit passed self-host, with the resulting compiler passing the tests. I
hope it doesn't break more complicated code. It's a pretty big change, but one
that I feel is necessary.
llvm-svn: 150318
to pretty-print such function types better, and to fix a case where we were not
instantiating templates in lexical order. In passing, move the Variadic bit from
Type's bitfields to FunctionProtoType to get the Type bitfields down to 32 bits.
Also ensure that we always substitute the return type of a function when
substituting explicitly-specified arguments, since that can cause us to bail
out with a SFINAE error before we hit a hard error in parameter substitution.
llvm-svn: 150241
- Capturing variables by-reference and by-copy within a lambda
- The representation of lambda captures
- The creation of the non-static data members in the lambda class
that store the captured variables
- The initialization of the non-static data members from the
captured variables
- Pretty-printing lambda expressions
There are a number of FIXMEs, both explicit and implied, including:
- Creating a field for a capture of 'this'
- Improved diagnostics for initialization failures when capturing
variables by copy
- Dealing with temporaries created during said initialization
- Template instantiation
- AST (de-)serialization
- Binding and returning the lambda expression; turning it into a
proper temporary
- Lots and lots of semantic constraints
- Parameter pack captures
llvm-svn: 149977
The new info is propagated to TSTLoc on template instantiation, getting rid of 3 FIXMEs in TreeTransform.h and another one Parser.cpp.
Simplified code in TypeSpecLocFiller visitor methods for DTSTLoc and DependentNameTypeLoc by removing what now seems to be dead code (adding corresponding assertions).
llvm-svn: 149923
Split out a new ExpressionEvaluationContext flag for this case, and don't treat
it as unevaluated in C++11. This fixes some crash-on-invalids where we would
allow references to class members in potentially-evaluated constant expressions
in static member functions, and also fixes half of PR10177.
The fix to PR10177 exposed a case where template instantiation failed to provide
a source location for a diagnostic, so TreeTransform has been tweaked to supply
source locations when transforming a type. The source location is still not very
good, but MarkDeclarationsReferencedInType would need to operate on a TypeLoc to
improve it further.
Also fix MarkDeclarationReferenced in C++98 mode to trigger instantiation for
static data members of class templates which are used in constant expressions.
This fixes a link-time problem, but we still incorrectly treat the member as
non-constant. The rest of the fix for that issue is blocked on PCH support for
early-instantiated static data members, which will be added in a subsequent
patch.
llvm-svn: 146955
template instantiation), and that expression might produce a
temporary, invoke MaybeBindToTemporary. Otherwise, we forget to
destroy objects, release objects, etc. Fixes <rdar://problem/10531073>.
llvm-svn: 146301
really bad way to go about this, but I'm not sure there's a better
choice without substantial changes to TreeTransform --- most
notably, preserving implicit semantic nodes instead of discarding
and rebuilding them.
llvm-svn: 145480
property references to use a new PseudoObjectExpr
expression which pairs a syntactic form of the expression
with a set of semantic expressions implementing it.
This should significantly reduce the complexity required
elsewhere in the compiler to deal with these kinds of
expressions (e.g. IR generation's special l-value kind,
the static analyzer's Message abstraction), at the lower
cost of specifically dealing with the odd AST structure
of these expressions. It should also greatly simplify
efforts to implement similar language features in the
future, most notably Managed C++'s properties and indexed
properties.
Most of the effort here is in dealing with the various
clients of the AST. I've gone ahead and simplified the
ObjC rewriter's use of properties; other clients, like
IR-gen and the static analyzer, have all the old
complexity *and* all the new complexity, at least
temporarily. Many thanks to Ted for writing and advising
on the necessary changes to the static analyzer.
I've xfailed a small diagnostics regression in the static
analyzer at Ted's request.
llvm-svn: 143867
expressions: expressions which refer to a logical rather
than a physical l-value, where the logical object is
actually accessed via custom getter/setter code.
A subsequent patch will generalize the AST for these
so that arbitrary "implementing" sub-expressions can
be provided.
Right now the only client is ObjC properties, but
this should be generalizable to similar language
features, e.g. Managed C++'s __property methods.
llvm-svn: 142914
Microsoft __if_exists/__if_not_exists statement. Also note that we
weren't traversing DeclarationNameInfo *at all* within the
RecursiveASTVisitor, which would be rather fatal for variadic
templates.
llvm-svn: 142906
statements. As noted in the documentation for the AST node, the
semantics of __if_exists/__if_not_exists are somewhat different from
the way Visual C++ implements them, because our parsed-template
representation can't accommodate VC++ semantics without serious
contortions. Hopefully this implementation is "good enough".
llvm-svn: 142901
Instead of always storing all source locations for the selector identifiers
we check whether all the identifiers are in a "standard" position; "standard" position is
-Immediately before the arguments: [foo first:1 second:2]
-With a space between the arguments: [foo first: 1 second: 2]
-For nullary selectors, immediately before ']': [foo release]
In such cases we infer the locations instead of storing them.
llvm-svn: 140987
for-in statements; specifically, make sure to close over any
temporaries or cleanups it might require. In ARC, this has
implications for the lifetime of the collection, so emit it
with a retain and release it upon exit from the loop.
rdar://problem/9817306
llvm-svn: 136204
that allocates an array of objects with a non-trivial destructor, be
sure to mark the destructor is "used". Fixes PR10480 /
<rdar://problem/9834317>.
llvm-svn: 136081
to represent a fully-substituted non-type template parameter.
This should improve source fidelity, as well as being generically
useful for diagnostics and such.
llvm-svn: 135243
throw-expressions, such that we don't consider the NRVO when the
non-volatile automatic object comes from outside the innermost try
scope (C++0x [class.copymove]p13). In C++98/03, our ASTs were
incorrect but it didn't matter because IR generation doesn't actually
apply the NRVO here. In C++0x, however, we were moving from an object
when in fact we should have copied from it. Fixes PR10142 /
<rdar://problem/9714312>.
llvm-svn: 134548
variadic argument pack expansions as having changed, rather than doing
it for each changed expansion, which leaves out zero-argument packs
with catastrophic consequences.
Fixes PR10260.
llvm-svn: 134483
for the '(' and ')' around the initializer unless we actually have an
initializer. Fixes PR10197, an issue where we were value-initializing
rather than default-initializing.
llvm-svn: 133913
MaterializeTemporaryExpr captures a reference binding to a temporary
value, making explicit that the temporary value (a prvalue) needs to
be materialized into memory so that its address can be used. The
intended AST invariant here is that a reference will always bind to a
glvalue, and MaterializeTemporaryExpr will be used to convert prvalues
into glvalues for that binding to happen. For example, given
const int& r = 1.0;
The initializer of "r" will be a MaterializeTemporaryExpr whose
subexpression is an implicit conversion from the double literal "1.0"
to an integer value.
IR generation benefits most from this new node, since it was
previously guessing (badly) when to materialize temporaries for the
purposes of reference binding. There are likely more refactoring and
cleanups we could perform there, but the introduction of
MaterializeTemporaryExpr fixes PR9565, a case where IR generation
would effectively bind a const reference directly to a bitfield in a
struct. Addresses <rdar://problem/9552231>.
llvm-svn: 133521
silently dropped ownership qualifiers that were being applied to
ownership-qualified, substituted type that was *not* a substituted
template type parameter. We now provide a diagnostic in such cases,
and recover by dropping the added qualifiers.
Document this behavior in the ARC specification.
llvm-svn: 133309
ownership-unqualified retainable object type as __strong. This allows
us to write, e.g.,
std::vector<id>
and we'll infer that the vector's element types have __strong
ownership semantics, which is far nicer than requiring:
std::vector<__strong id>
Note that we allow one to override the ownership qualifier of a
substituted template type parameter, e.g., given
template<typename T>
struct X {
typedef __weak T type;
};
X<id> is treated the same as X<__strong id>. At instantiation type,
the __weak in "__weak T" overrides the (inferred or specified)
__strong on the template argument type, so that we can still provide
metaprogramming transformations.
This is part of <rdar://problem/9595486>.
llvm-svn: 133303
Language-design credit goes to a lot of people, but I particularly want
to single out Blaine Garst and Patrick Beard for their contributions.
Compiler implementation credit goes to Argyrios, Doug, Fariborz, and myself,
in no particular order.
llvm-svn: 133103
- Removed fix-it hints from template instaniations since changes to the
templates are rarely helpful.
- Changed the caret in template instaniations from the class/struct name to the
class/struct keyword, matching the other warnings.
- Do not offer fix-it hints when multiple declarations disagree. Warnings are
still given.
- Once a definition is found, offer a fix-it hint to all previous declarations
with wrong tag.
- Declarations that disagree with a previous definition will get a fix-it hint
to change the declaration.
llvm-svn: 132831
__builtin_astype(): Used to reinterpreted as another data type of the same size using for both scalar and vector data types.
Added test case.
llvm-svn: 132612
I tried to use an assert to prove that I could remove each of the
arguments I did, but ended up writing my assert with inverted logic.
Doh! Reported by Xi Wang on cfe-dev. I have manually verified the source
locations and ranges for these using -ast-dump. I tried writing a test
case that would catch these, but these expressions aren't exposed in the
c-index-test's token annotation utility.
llvm-svn: 132284
traits which uses the information embedded in the expression. Use this
to simplify several interfaces which repeated information embedded in
the expression through explicit arguments. I added an assertion that the
only extra piece of data to come in from the parser matches what is
stored in the expression. No functionality change intended here.
Also cleaned up the doxygen comments for some of these methods and some
formatting oddities.
llvm-svn: 132115
type that turns one type into another. This is used as the basis to
implement __underlying_type properly - with TypeSourceInfo and proper
behavior in the face of templates.
llvm-svn: 132017
parameter node and use this to correctly mangle parameter
references in function template signatures.
A follow-up patch will improve the storage usage of these
fields; here I've just done the lazy thing.
llvm-svn: 130669
Patch authored by John Wiegley.
These are array type traits used for parsing code that employs certain
features of the Embarcadero C++ compiler: __array_rank(T) and
__array_extent(T, Dim).
llvm-svn: 130351
Patch authored by David Abrahams.
These two expression traits (__is_lvalue_expr, __is_rvalue_expr) are used for
parsing code that employs certain features of the Embarcadero C++ compiler.
llvm-svn: 130122
instantiation), be sure to add the transformed declaration into the
current DeclContext. Also, remove the -Wuninitialized hack that works
around this bug. Fixes <rdar://problem/9200676>.
llvm-svn: 129544
This patch authored by Eric Niebler.
Many methods on the Sema class (e.g. ConvertPropertyForRValue) take Expr
pointers as in/out parameters (Expr *&). This is especially true for the
routines that apply implicit conversions to nodes in-place. This design is
workable only as long as those conversions cannot fail. If they are allowed
to fail, they need a way to report their failures. The typical way of doing
this in clang is to use an ExprResult, which has an extra bit to signal a
valid/invalid state. Returning ExprResult is de riguour elsewhere in the Sema
interface. We suggest changing the Expr *& parameters in the Sema interface
to ExprResult &. This increases interface consistency and maintainability.
This interface change is important for work supporting MS-style C++
properties. For reasons explained here
<http://lists.cs.uiuc.edu/pipermail/cfe-dev/2011-February/013180.html>,
seemingly trivial operations like rvalue/lvalue conversions that formerly
could not fail now can. (The reason is that given the semantics of the
feature, getter/setter method lookup cannot happen until the point of use, at
which point it may be found that the method does not exist, or it may have the
wrong type, or overload resolution may fail, or it may be inaccessible.)
llvm-svn: 129143
location into a TemplateSpecializationTypeLoc. These were found using
a hand-written program to inspect every source location in
TemplateSpecializationTypeLocs and Valgrind. I don't know of any way to
test them in Clang's existing test suite sadly.
Example code that triggers the ElaboratedType case:
template <typename T> struct X1 {
template <typename U> struct X1_1 {
int x;
};
};
template <typename T, typename U> struct X2 {
typename X1<T>::template X1_1<U> B;
};
X2<char, int> x2;
The other fix was simply spotted by inspection. I audited all constructions of
[Dependent]TemplateSpecializationTypeLocs in TreeTransform.h, and the rest set
the TemplateNameLoc properly.
llvm-svn: 128702