As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
Consider this type of a loop:
for (...) {
...
if (...) continue;
...
}
Normally, the "continue" would branch to the loop control code that
checks whether the loop should continue iterating and which contains
the (often) unique loop latch branch. In certain cases jump threading
can "thread" the inner branch directly to the loop header, creating
a second loop latch. Loop canonicalization would then transform this
loop into a loop nest. The problem with this is that in such a loop
nest neither loop is countable even if the original loop was. This
may inhibit subsequent loop optimizations and be detrimental to
performance.
Differential Revision: https://reviews.llvm.org/D36404
llvm-svn: 312664
Summary:
When simplifying unconditional branches from empty blocks, we pre-test if the
BB belongs to a set of loop headers and keep the block to prevent passes from
destroying canonical loop structure. However, the current algorithm fails if
the destination of the branch is a loop header. Especially when such a loop's
latch block is folded into loop header it results in additional backedges and
LoopSimplify turns it into a nested loop which prevent later optimizations
from being applied (e.g., loop unrolling and loop interleaving).
This patch augments the existing algorithm by further checking if the
destination of the branch belongs to a set of loop headers and defer
eliminating it if yes to LateSimplifyCFG.
Fixes PR33605: https://bugs.llvm.org/show_bug.cgi?id=33605
Reviewers: efriedma, mcrosier, pacxx, hsung, davidxl
Reviewed By: efriedma
Subscribers: ashutosh.nema, gberry, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D35411
llvm-svn: 308422
Currently the pass updates branch weights in the IR if the function has
any PGO info (entry frequency is set). However we could still have
regions of the CFG that does not have branch weights collected (e.g. a
cold region). In this case we'd use static estimates. Since static
estimates for branches are determined independently, they are
inconsistent. Updating them can "randomly" inflate block frequencies.
I've run into this in a completely cold loop of h264ref from
SPEC. -Rpass-with-hotness showed the loop to be completely cold during
inlining (before JT) but completely hot during vectorization (after JT).
The new testcase demonstrate the problem. We check array elements
against 1, 2 and 3 in a loop. The check against 3 is the loop-exiting
check. The block names should be self-explanatory.
In this example, jump threading incorrectly updates the weight of the
loop-exiting branch to 0, drastically inflating the frequency of the
loop (in the range of billions).
There is no run-time profile info for edges inside the loop, so branch
probabilities are estimated. These are the resulting branch and block
frequencies for the loop body:
check_1 (16)
(8) / |
eq_1 | (8)
\ |
check_2 (16)
(8) / |
eq_2 | (8)
\ |
check_3 (16)
(1) / |
(loop exit) | (15)
|
(back edge)
First we thread eq_1 -> check_2 to check_3. Frequencies are updated to
remove the frequency of eq_1 from check_2 and then from the false edge
leaving check_2. Changed frequencies are highlighted with * *:
check_1 (16)
(8) / |
eq_1~ | (8)
/ |
/ check_2 (*8*)
/ (8) / |
\ eq_2 | (*0*)
\ \ |
` --- check_3 (16)
(1) / |
(loop exit) | (15)
|
(back edge)
Next we thread eq_1 -> check_3 and eq_2 -> check_3 to check_1 as new
back edges. Frequencies are updated to remove the frequency of eq_1 and
eq_3 from check_3 and then the false edge leaving check_3 (changed
frequencies are highlighted with * *):
check_1 (16)
(8) / |
eq_1~ | (8)
/ |
/ check_2 (*8*)
/ (8) / |
/-- eq_2~ | (*0*)
(back edge) |
check_3 (*0*)
(*0*) / |
(loop exit) | (*0*)
|
(back edge)
As a result, the loop exit edge ends up with 0 frequency which in turn makes
the loop header to have maximum frequency.
There are a few potential problems here:
1. The profile data seems odd. There is a single profile sample of the
loop being entered. On the other hand, there are no weights inside the
loop.
2. Based on static estimation we shouldn't set edges to "extreme"
values, i.e. extremely likely or unlikely.
3. We shouldn't create profile metadata that is calculated from static
estimation. I am not sure what policy is but it seems to make sense to
treat profile metadata as something that is known to originate from
profiling. Estimated probabilities should only be reflected in BPI/BFI.
Any one of these would probably fix the immediate problem. I went for 3
because I think it's a good policy to have and added a FIXME about 2.
Differential Revision: https://reviews.llvm.org/D24118
llvm-svn: 280713