Summary:
Don't attempt to analyze the decomposed GEP for scalable type.
GEP index scale is not compile-time constant for scalable type.
Be conservative, return MayAlias.
Explicitly call TypeSize::getFixedSize() to assert on places where
scalable type doesn't make sense.
Add unit tests to check functionality of -basicaa for scalable type.
This patch is needed for D76944.
Reviewers: sdesmalen, efriedma, spatel, bjope, ctetreau
Reviewed By: efriedma
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77828
If we're inserting into v2i8/v4i8/v8i8/v2i16/v4i16 style sub-128bit vectors ensure we don't use the SK_PermuteTwoSrc cost of the legalized value type - this is a followup to rG12c629ec6c59 which added equivalent sub-128bit shuffle costs
This is similar to what I recently did for getArithmeticReductionCost.
I'm trying to account for the narrowing from 512->256->128 as we go.
I've also added a new helper method getMinMaxCost that tries to
handle the cases where we have native min/max instructions and
fall back to cmp+select when we don't.
Differential Revision: https://reviews.llvm.org/D76634
v2i8/v4i8/v8i8 + v2i16/v4i16 all show up in vectorizer code and by just using the legalized types (v16i8/v8i16) we're highly exaggerating the actual cost of the shuffle.
For the PHI node
%1 = phi [%A, %entry], [%X, %latch]
it is incorrect to use SCEV of backedge val %X as an exit value
of PHI unless %X is loop invariant.
This is because exit value of %1 is value of %X at one-before-last
iteration of the loop.
Reviewed By: Meinersbur
Differential Revision: https://reviews.llvm.org/D73181
Add a new llvm.amdgcn.ballot intrinsic modeled on the ballot function
in GLSL and other shader languages. It returns a bitfield containing the
result of its boolean argument in all active lanes, and zero in all
inactive lanes.
This is intended to replace the existing llvm.amdgcn.icmp and
llvm.amdgcn.fcmp intrinsics after a suitable transition period.
Use the new intrinsic in the atomic optimizer pass.
Differential Revision: https://reviews.llvm.org/D65088
This patch attempts to more accurately model the reduction of
power of 2 vectors of types we natively support. This takes into
account the narrowing of vectors that occur as we go from 512
bits to 256 bits, to 128 bits. It also takes into account the use
of wider elements in the shuffles for the first 2 steps of a
reduction from 128 bits. And uses a v8i16 shift for the final step
of vXi8 reduction.
The default implementation uses the legalized type for the arithmetic
for all levels. And uses the single source permute cost of the
legalized type for all levels. This penalizes things like
lack of v16i8 pshufb on pre-sse3 targets and the splitting and
joining that needs to be done for integer types on AVX1. We never
need v16i8 shuffle for a reduction and we only need split AVX1 ops
when type the type wide and needs to be split. I think we're still
over costing splits and joins for AVX1, but we're closer now.
I've also removed all pairwise special casing because I don't
think we ever want to generate that on X86. I've also adjusted
the add handling to more accurately account for any type splitting
that occurs before we reach a legal type.
Differential Revision: https://reviews.llvm.org/D76478
Summary:
Avoid blind cast from Operator to ExtractElementInst in
computeKnownBitsFromOperator. This resulted in some crashes
in downstream fuzzy testing. Instead we use getOperand directly
on the Operator when accessing the vector/index operands.
Haven't seen any problems with InsertElement and ShuffleVector,
but I believe those could be used in constant expressions as well.
So the same kind of fix as for ExtractElement was also applied for
InsertElement.
When it comes to ShuffleVector we now simply bail out if a dynamic
cast of the Operator to ShuffleVectorInst fails. I've got no
reproducer indicating problems for ShuffleVector, and a fix would be
slightly more complicated as getShuffleDemandedElts is involved.
Reviewers: RKSimon, nikic, spatel, efriedma
Reviewed By: RKSimon
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76564
Previously we multiplied the cost for the table entries by the number of splits needed. But that implies that each split goes through a reduction to scalar independently. I think what really happens is that the we AND/OR the split pieces until we're down to a single value with a legal type and then do special reduction sequence on that.
So to model that this patch takes the number of splits minus one multiplied by the cost of a AND/OR at the legal element count and adds that on top of the table lookup.
Differential Revision: https://reviews.llvm.org/D76400
This is fixing up various places that use the implicit
TypeSize->uint64_t conversion.
The new overloads in MemoryLocation.h are already used in various places
that construct a MemoryLocation from a TypeSize, including MemorySSA.
(They were using the implicit conversion before.)
Differential Revision: https://reviews.llvm.org/D76249
Summary:
Run StackSafetyAnalysis at the end of the IR pipeline and annotate
proven safe allocas with !stack-safe metadata. Do not instrument such
allocas in the AArch64StackTagging pass.
Reviewers: pcc, vitalybuka, ostannard
Reviewed By: vitalybuka
Subscribers: merge_guards_bot, kristof.beyls, hiraditya, cfe-commits, gilang, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73513
Because we have to use a ConstantExpr at some point, the canonical form
isn't set in stone, but this seems reasonable.
The pretty sizeof(<vscale x 4 x i32>) dumping is a relic of ancient
LLVM; I didn't have to touch that code. :)
Differential Revision: https://reviews.llvm.org/D75887
Summary:
Do not iterate on scalable vector. Also do not return constant scalable vector
from ConstantInt::get().
Fix result type by using getElementCount() instead of getNumElements().
Reviewers: sdesmalen, efriedma, apazos, huntergr, willlovett
Reviewed By: efriedma
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73753
Refines the gather/scatter cost model, but also changes the TTI
function getIntrinsicInstrCost to accept an additional parameter
which is needed for the gather/scatter cost evaluation.
This did require trivial changes in some non-ARM backends to
adopt the new parameter.
Extending gathers and truncating scatters are now priced cheaper.
Differential Revision: https://reviews.llvm.org/D75525
If a call argument has the "returned" attribute, we can simplify
the call to the value of that argument. The "-inst-simplify" pass
already handled this for the constant integer argument case via
known bits, which is invoked in SimplifyInstruction. However,
non-constant (or non-int) arguments are not handled at all right now.
This addresses one of the regressions from D75801.
Differential Revision: https://reviews.llvm.org/D75815
Summary: This patch adds an analysis pass to collect loop nests and
summarize properties of the nest (e.g the nest depth, whether the nest
is perfect, what's the innermost loop, etc...).
The motivation for this patch was discussed at the latest meeting of the
LLVM loop group (https://ibm.box.com/v/llvm-loop-nest-analysis) where we
discussed
the unimodular loop transformation framework ( “A Loop Transformation
Theory and an Algorithm to Maximize Parallelism”, Michael E. Wolf and
Monica S. Lam, IEEE TPDS, October 1991). The unimodular framework
provides a convenient way to unify legality checking and code generation
for several loop nest transformations (e.g. loop reversal, loop
interchange, loop skewing) and their compositions. Given that the
unimodular framework is applicable to perfect loop nests this is one
property of interest we expose in this analysis. Several other utility
functions are also provided. In the future other properties of interest
can be added in a centralized place.
Authored By: etiotto
Reviewer: Meinersbur, bmahjour, kbarton, Whitney, dmgreen, fhahn,
reames, hfinkel, jdoerfert, ppc-slack
Reviewed By: Meinersbur
Subscribers: bryanpkc, ppc-slack, mgorny, hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D68789
Summary: This patch adds an analysis pass to collect loop nests and
summarize properties of the nest (e.g the nest depth, whether the nest
is perfect, what's the innermost loop, etc...).
The motivation for this patch was discussed at the latest meeting of the
LLVM loop group (https://ibm.box.com/v/llvm-loop-nest-analysis) where we
discussed
the unimodular loop transformation framework ( “A Loop Transformation
Theory and an Algorithm to Maximize Parallelism”, Michael E. Wolf and
Monica S. Lam, IEEE TPDS, October 1991). The unimodular framework
provides a convenient way to unify legality checking and code generation
for several loop nest transformations (e.g. loop reversal, loop
interchange, loop skewing) and their compositions. Given that the
unimodular framework is applicable to perfect loop nests this is one
property of interest we expose in this analysis. Several other utility
functions are also provided. In the future other properties of interest
can be added in a centralized place.
Authored By: etiotto
Reviewer: Meinersbur, bmahjour, kbarton, Whitney, dmgreen, fhahn,
reames, hfinkel, jdoerfert, ppc-slack
Reviewed By: Meinersbur
Subscribers: bryanpkc, ppc-slack, mgorny, hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D68789
This tries to improve the accuracy of extract/insert element costs by accounting for subvector extraction/insertion for >128-bit vectors and the shuffling of elements to/from the 0'th index.
It also adds INSERTPS for f32 types and PINSR/PEXTR costs for integer types (at the moment we assume the same cost as MOVD/MOVQ - which isn't always true).
Differential Revision: https://reviews.llvm.org/D74976
Summary:
Currently the dependence analysis in LLVM is unable to compute accurate
dependence vectors for multi-dimensional fixed size arrays.
This is mainly because the delinearization algorithm in scalar evolution
relies on parametric terms to be present in the access functions. In the
case of fixed size arrays such parametric terms are not present, but we
can use the indexes from GEP instructions to recover the subscripts for
each dimension of the arrays. This patch adds this ability under the
existing option `-da-disable-delinearization-checks`.
Authored By: bmahjour
Reviewer: Meinersbur, sebpop, fhahn, dmgreen, grosser, etiotto, bollu
Reviewed By: Meinersbur
Subscribers: hiraditya, arphaman, Whitney, ppc-slack, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72178
D74976 will handle larger vector types, but since SLM doesn't support AVX+ then we will always be extracting from 128-bit vectors so don't need to scale the cost.