on all objects it has allocated, if they are all of the same size and alignment.
Use this to destruct all VNInfos allocated in LiveIntervalAnalysis (PR6653).
valnos is not reliable for this purpose, as seen in r99400
(which still leaked, and sometimes caused double frees).
llvm-svn: 99881
transform. I.e., if a clean-up eh.selector call dominates the invoke of an
_Unwind_Resume_or_Rethrow, then we convert the eh.selector into a
catch-all. This patch, however, uses the DominatorTree information, and doesn't
go through the whole rigmarole of starting at the eh.exception call, finding the
corresponding URoR and eh.selector calls, and trying to trace through any number
of instruction types to get to them.
llvm-svn: 99846
and those derived from them. These are obnoxious because
they were written as: PatLeaf<(bitconvert). Not having an
argument was foiling adding better type checking for operand
count matching up with what was required (in this case,
bitconvert always requires an operand!)
llvm-svn: 99759
'invoke' instruction. You will get a situation like this:
bb:
%ehptr = eh.exception()
%sel = eh.selector(%ehptr, @per, 0);
...
bb2:
invoke _Unwind_Resume_or_Rethrow(%ehptr) %normal unwind to %lpad
lpad:
...
The unwinder will see the %sel call as a clean-up and, if it doesn't have a
catch further up the call stack, it will skip running it. But there *is* another
catch up the stack -- the catch for the %lpad. However, we can't see that. This
is fixed in code-gen, where we detect this situation, and convert the "clean-up"
selector call into a "catch-all" selector call. This gives us the correct
semantics.
llvm-svn: 99671
the custom insertion hook deletes the instruction, then we try to set dead
flags on it. Neither the code that I added nor the code that was there
before was safe.
llvm-svn: 99538
bytes instead of one byte. This is important because
we're running up to too many opcodes to fit in a byte
and it is aggrevated by FIRST_TARGET_MEMORY_OPCODE
making the numbering sparse. This just bites the
bullet and bloats out the table. In practice, this
increases the size of the x86 isel table from 74.5K
to 76K. I think we'll cope :)
This fixes rdar://7791648
llvm-svn: 99494
happening.
Enhance scheduling to set the DEAD flag on implicit defs
more aggressively. Before, we'd set an implicit def operand
to dead if it were present in the SDNode corresponding to
the machineinstr but had no use. Now we do it in this case
AND if the implicit def does not exist in the SDNode at all.
This exposes a couple of problems: one is the FIXME, which
causes a live intervals crash on CodeGen/X86/sibcall.ll.
The second is that it makes machinecse and licm more
aggressive (which is a good thing) but also exposes a case
where licm hoists a set0 and then it doesn't get resunk.
Talking to codegen folks about both these issues, but I need
this patch in in the meantime.
llvm-svn: 99485
Here is a theoretical example that illustrates why the placement is important.
tmp1 =
store tmp1 -> x
...
tmp2 = add ...
...
call
...
store tmp2 -> x
Now mem2reg comes along:
tmp1 =
dbg_value (tmp1 -> x)
...
tmp2 = add ...
...
call
...
dbg_value (tmp2 -> x)
When the debugger examine the value of x after the add instruction but before the call, it should have the value of tmp1.
Furthermore, for dbg_value's that reference constants, they should not be emitted at the beginning of the block (since they do not have "producers").
This patch also cleans up how SDISel manages DbgValue nodes. It allow a SDNode to be referenced by multiple SDDbgValue nodes. When a SDNode is deleted, it uses the information to find the SDDbgValues and invalidate them. They are not deleted until the corresponding SelectionDAG is destroyed.
llvm-svn: 99469
otherwise the SmallVector it contains doesn't free its memory.
In most cases LiveIntervalAnalysis could get away by not calling the destructor,
because VNInfos are bumpptr-allocated, and smallvectors usually don't grow.
However when the SmallVector does grow it always leaks.
This is the valgrind shown leak from the original testcase:
==8206== 18,304 bytes in 151 blocks are definitely lost in loss record 164 of 164
==8206== at 0x4A079C7: operator new(unsigned long) (vg_replace_malloc.c:220)
==8206== by 0x4DB7A7E: llvm::SmallVectorBase::grow_pod(unsigned long, unsigned long) (in /home/edwin/clam/git/builds/defaul
t/libclamav/.libs/libclamav.so.6.1.0)
==8206== by 0x4F90382: llvm::VNInfo::addKill(llvm::SlotIndex) (in /home/edwin/clam/git/builds/default/libclamav/.libs/libcl
amav.so.6.1.0)
==8206== by 0x5126B5C: llvm::LiveIntervals::handleVirtualRegisterDef(llvm::MachineBasicBlock*, llvm::ilist_iterator<llvm::M
achineInstr>, llvm::SlotIndex, llvm::MachineOperand&, unsigned int, llvm::LiveInterval&) (in /home/edwin/clam/git/builds/defau
lt/libclamav/.libs/libclamav.so.6.1.0)
==8206== by 0x512725E: llvm::LiveIntervals::handleRegisterDef(llvm::MachineBasicBlock*, llvm::ilist_iterator<llvm::MachineI
nstr>, llvm::SlotIndex, llvm::MachineOperand&, unsigned int) (in /home/edwin/clam/git/builds/default/libclamav/.libs/libclamav
.so.6.1.0)
==8206== by 0x51278A8: llvm::LiveIntervals::computeIntervals() (in /home/edwin/clam/git/builds/default/libclamav/.libs/libc
lamav.so.6.1.0)
==8206== by 0x5127CB4: llvm::LiveIntervals::runOnMachineFunction(llvm::MachineFunction&) (in /home/edwin/clam/git/builds/de
fault/libclamav/.libs/libclamav.so.6.1.0)
==8206== by 0x4DAE935: llvm::FPPassManager::runOnFunction(llvm::Function&) (in /home/edwin/clam/git/builds/default/libclama
v/.libs/libclamav.so.6.1.0)
==8206== by 0x4DAEB10: llvm::FunctionPassManagerImpl::run(llvm::Function&) (in /home/edwin/clam/git/builds/default/libclama
v/.libs/libclamav.so.6.1.0)
==8206== by 0x4DAED3D: llvm::FunctionPassManager::run(llvm::Function&) (in /home/edwin/clam/git/builds/default/libclamav/.l
ibs/libclamav.so.6.1.0)
==8206== by 0x4D8BE8E: llvm::JIT::runJITOnFunctionUnlocked(llvm::Function*, llvm::MutexGuard const&) (in /home/edwin/clam/git/builds/default/libclamav/.libs/libclamav.so.6.1.0)
==8206== by 0x4D8CA72: llvm::JIT::getPointerToFunction(llvm::Function*) (in /home/edwin/clam/git/builds/default/libclamav/.libs/libclamav.so.6.1.0)
llvm-svn: 99400
disabled for several months (since svn r88806) and no one noticed. My fix
for pr6543 yesterday reenabled it, but broke the ARM port's code for using
TBB/TBH. Rather than adding a target hook to disable merging for Thumb2 only,
I'm just taking this out. It is not common to have identical jump tables,
the code we used to merge them was O(N^2), and it only helps code size, not
performance.
llvm-svn: 98977
always create a new jump table. The intention was to avoid merging jump
tables in SelectionDAGBuilder, and to wait for the branch folding pass to
merge tables. Unfortunately, the same getJumpTableIndex() method is also
used to merge tables in branch folding, so as a result of this change
branch tables are never merged. Worse, the branch folding code is expecting
getJumpTableIndex to always return the index of an existing table, but with
this change, it never does so. In at least some cases, e.g., pr6543, this
creates references to non-existent tables.
I've fixed the problem by adding a new createJumpTableIndex function, which
will always create a new table, and I've changed getJumpTableIndex to only
look at existing tables.
llvm-svn: 98845
Remove ugly hack that aborted the coalescer before using N^2 time.
This affects functions with very complicated live intervals for physical
registers, i.e. functions with thousands of function calls.
llvm-svn: 98776
to LLVM IR changes with addr label weirdness. In the testcase, we
generate references to the two bb's when codegen'ing the first
function:
_test1: ## @test1
leaq Ltmp0(%rip), %rax
..
leaq Ltmp1(%rip), %rax
Then continue to codegen the second function where the blocks
get merged. We're now smart enough to emit both labels, producing
this code:
_test_fun: ## @test_fun
## BB#0: ## %entry
Ltmp1: ## Block address taken
Ltmp0:
## BB#1: ## %ret
movl $-1, %eax
ret
Rejoice.
llvm-svn: 98595
label is generated, but then the block is deleted. Since the
value is undefined, we just emit the label right after the entry
label of the function. It might matter that the label is in the
same section as the function was afterall.
llvm-svn: 98579
function, then the BB is RAUW'd before the definition is emitted. There
are still two cases not being handled, but this should improve us back to
the situation before I touched anything.
llvm-svn: 98566