Ideally, we would fold all of these in InstSimplify in a
similar way to rL347896, but this is a bit awkward when
we're trying to simplify a compare directly because the
ValueTracking API expects the compare as an input, but
in InstSimplify, we just have the operands of the compare.
Given that we can do transforms besides just simplifications,
we might as well just extend the code in InstCombine (which
already does simplifications with constant operands).
llvm-svn: 348312
If a PHI node out of extracted region has multiple incoming values from it,
split this PHI on two parts. First PHI has incomings only from region and
extracts with it (they are placed to the separate basic block that added to the
list of outlined), and incoming values in original PHI are replaced by first
PHI. Similar solution is already used in CodeExtractor for PHIs in entry block
(severSplitPHINodes method). It covers PR39433 bug.
Patch by Sergei Kachkov!
Differential Revision: https://reviews.llvm.org/D55018
llvm-svn: 348205
When we have a shuffle that extends a source vector with undefs
and then do some binop on that, we must make sure that the extra
elements remain undef with that binop if we reverse the order of
the binop and shuffle.
'or' is probably the easiest example to show the bug because
'or C, undef --> -1' (not undef). But there are other
opcode/constant combinations where this is true as shown by
the 'shl' test.
llvm-svn: 348191
These are the baseline tests for D54827.
Patch based on code originally written by: @yinyuefengyi (luo xionghu)
Differential Revision: https://reviews.llvm.org/D54994
llvm-svn: 348151
Add '-k 1' to 'sort -b' calls in SimpleLoopUnswitch tests, as required
for sort implementation on NetBSD. The '-b' modifier is ineffective
if specified without any key. Per the manpage:
Note that the -b option has no effect unless key fields are specified.
Differential Revision: https://reviews.llvm.org/D55168
llvm-svn: 348097
We were adding the entire scalarization extraction cost for reductions, which returns the total cost of extracting every element of a vector type.
For reductions we don't need to do this - we just need to extract the 0'th element after the reduction pattern has completed.
Fixes PR37731
Rebased and reapplied after being reverted in rL347541 due to PR39774 - which was fixed by D54955/rL347759 and D55017/rL347997
Differential Revision: https://reviews.llvm.org/D54585
llvm-svn: 348076
Extend ssub.sat(X, C) -> sadd.sat(X, -C) canonicalization to also
support non-splat vector constants. This is done by generalizing
the implementation of the isNotMinSignedValue() helper to return
true for constants that are non-splat, but don't contain any
signed min elements.
Differential Revision: https://reviews.llvm.org/D55011
llvm-svn: 348072
Summary:
Follow up to D54270, which allowed importing of var args functions
unless they called va_start. As pointed out in the post-commit comments
on that patch, the inliner can handle functions that call va_start in
certain situations as well. Go ahead and enable importing of all var
args functions. Measurements on a large binary show that this increases
imports and binary size by an insignificant amount.
Reviewers: davidxl
Subscribers: mehdi_amini, inglorion, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D54607
llvm-svn: 348068
These tests should probably go under a separate test file because they
should fold with just -constprop, but they're similar to the scalar
tests already in here.
llvm-svn: 348045
Summary:
When mem2reg inserts phi nodes in blocks with unreachable predecessors,
it adds undef operands for those incoming edges. When there are
multiple such predecessors, the order is currently based on the address
of the BasicBlocks. This change fixes that by using the BBNumbers in
the sort/search predicates, as is done elsewhere in mem2reg to ensure
determinism.
Also adds a testcase with a bunch of unreachable preds, which
(nodeterministically) fails without the fix.
Reviewers: majnemer
Reviewed By: majnemer
Subscribers: mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D55077
llvm-svn: 348024
Summary:
An additional fix for PR39774. Need to update the references for the
RedcutionRoot instruction when it is replaced during the vectorization
phase to avoid compiler crash on reduction vectorization.
Reviewers: RKSimon, spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D55017
llvm-svn: 347997
Adding a new reduction pattern match for vectorizing code similar
to TSVC s3111:
for (int i = 0; i < N; i++)
if (a[i] > b)
sum += a[i];
This patch adds support for fadd, fsub and fmull, as well as multiple
branches and different (but compatible) instructions (ex. add+sub) in
different branches.
The difference from the previous patch(https://reviews.llvm.org/D49168)
is as follows:
- Added check of fast-math property of fp-instruction to the
previous patch
- Fix/add some pattern for if-reduction.ll
Differential Revision: https://reviews.llvm.org/D54464
Patch by Takahiro Miyoshi <takahiro.miyoshi@linaro.org>
and Masakazu Ueno <masakazu.ueno@linaro.org>
llvm-svn: 347989
Terminator folding transform lacks MemorySSA update for memory Phis,
while they exist within MemorySSA analysis. They need exactly the same
type of updates as regular Phis. Failing to update them properly ends up
with inconsistent MemorySSA and manifests in various assertion failures.
This patch adds Memory Phi updates to this transform.
Thanks to @jonpa for finding this!
Differential Revision: https://reviews.llvm.org/D55050
Reviewed By: asbirlea
llvm-svn: 347979
r320789 suppressed moving the insertion point of SCEV expressions with
dev/rem operations to the loop header in non-loop-invariant situations.
This, and similar, hoisting is also unsafe in the loop-invariant case,
since there may be a guard against a zero denominator. This is an
adjustment to the fix of r320789 to suppress the movement even in the
loop-invariant case.
This fixes PR30806.
Differential Revision: https://reviews.llvm.org/D54713
llvm-svn: 347934
Also revert fix r347876
One of the buildbots was reporting a failure in some relevant tests that I can't
repro or explain at present, so reverting until I can isolate.
llvm-svn: 347911
This is an almost direct move of the functionality from InstCombine to
InstSimplify. There's no reason not to do this in InstSimplify because
we never create a new value with this transform.
(There's a question of whether any dominance-based transform belongs in
either of these passes, but that's a separate issue.)
I've changed 1 of the conditions for the fold (1 of the blocks for the
branch must be the block we started with) into an assert because I'm not
sure how that could ever be false.
We need 1 extra check to make sure that the instruction itself is in a
basic block because passes other than InstCombine may be using InstSimplify
as an analysis on values that are not wired up yet.
The 3-way compare changes show that InstCombine has some kind of
phase-ordering hole. Otherwise, we would have already gotten the intended
final result that we now show here.
llvm-svn: 347896
This commit caused a large compile-time slowdown in some cases when NDEBUG is
off due to the dominator tree verification it added. Fix this by only doing
dominator tree and loop info verification when something has been hoisted.
Differential Revision: https://reviews.llvm.org/D52827
llvm-svn: 347889
Summary:
When splitting musttail calls, the split blocks' original terminators
get removed; inform the DTU when this happens.
Also add a testcase that fails an assertion in the DTU without this fix.
Reviewers: fhahn, junbuml
Reviewed By: fhahn
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D55027
llvm-svn: 347872
TFE and LWE support requires extra result registers that are written in the
event of a failure in order to detect that failure case.
The specific use-case that initiated these changes is sparse texture support.
This means that if image intrinsics are used with either option turned on, the
programmer must ensure that the return type can contain all of the expected
results. This can result in redundant registers since the vector size must be a
power-of-2.
This change takes roughly 6 parts:
1. Modify the instruction defs in tablegen to add new instruction variants that
can accomodate the extra return values.
2. Updates to lowerImage in SIISelLowering.cpp to accomodate setting TFE or LWE
(where the bulk of the work for these instruction types is now done)
3. Extra verification code to catch cases where intrinsics have been used but
insufficient return registers are used.
4. Modification to the adjustWritemask optimisation to account for TFE/LWE being
enabled (requires extra registers to be maintained for error return value).
5. An extra pass to zero initialize the error value return - this is because if
the error does not occur, the register is not written and thus must be zeroed
before use. Also added a new (on by default) option to ensure ALL return values
are zero-initialized that is required for sparse texture support.
6. Disable the inst_combine optimization in the presence of tfe/lwe (later TODO
for this to re-enable and handle correctly).
There's an additional fix now to avoid a dmask=0
For an image intrinsic with tfe where all result channels except tfe
were unused, I was getting an image instruction with dmask=0 and only a
single vgpr result for tfe. That is incorrect because the hardware
assumes there is at least one vgpr result, plus the one for tfe.
Fixed by forcing dmask to 1, which gives the desired two vgpr result
with tfe in the second one.
The TFE or LWE result is returned from the intrinsics using an aggregate
type. Look in the test code provided to see how this works, but in essence IR
code to invoke the intrinsic looks as follows:
%v = call {<4 x float>,i32} @llvm.amdgcn.image.load.1d.v4f32i32.i32(i32 15,
i32 %s, <8 x i32> %rsrc, i32 1, i32 0)
%v.vec = extractvalue {<4 x float>, i32} %v, 0
%v.err = extractvalue {<4 x float>, i32} %v, 1
Differential revision: https://reviews.llvm.org/D48826
Change-Id: If222bc03642e76cf98059a6bef5d5bffeda38dda
llvm-svn: 347871
This reverts commits r347776 and r347778.
The first one, r347776, caused significant compile time regressions
for certain input files, see PR39836 for details.
llvm-svn: 347867
Lack of an attribute means that the function hasn't been checked for what vector width it requires. So if the caller or the callee doesn't have the attribute we should make sure the combined function after inlining does not have the attribute.
If the caller already doesn't have the attribute we can just avoid adding it. Otherwise if the callee doesn't have the attribute just remove the caller's attribute.
llvm-svn: 347841
Packing the flags into one bitcode word will save effort in
adding new flags in the future.
Differential Revision: https://reviews.llvm.org/D54755
llvm-svn: 347806
In PR39807 we incorrectly handle circumstances where calls are common'd
from conditional blocks into the parent BB. Calls that can be inlined
must always have DebugLocs, however we strip them during commoning, which
the IR verifier asserts on.
Fix this by using applyMergedLocation: it will perform the same DebugLoc
stripping of conditional Locs, but will also generate an unknown location
DebugLoc that satisfies the requirement for inlinable calls to always have
locations.
Some of the prior logic for selecting a DebugLoc is now likely redundant;
I'll generate a follow-up to remove it (involves editing more regression
tests).
Differential Revision: https://reviews.llvm.org/D54997
llvm-svn: 347782
This commit caused failures because it failed to correctly handle cases where
we hoist a phi, then hoist a use of that phi, then have to rehoist that use. We
need to make sure that we rehoist the use to _after_ the hoisted phi, which we
do by always rehoisting to the immediate dominator instead of just rehoisting
everything to the original preheader.
An option is also added to control whether control flow is hoisted, which is
off in this commit but will be turned on in a subsequent commit.
Differential Revision: https://reviews.llvm.org/D52827
llvm-svn: 347776
Combine
sat(sat(X + C1) + C2) -> sat(X + (C1+C2))
and
sat(sat(X - C1) - C2) -> sat(X - (C1+C2))
if the sign of C1 and C2 matches.
In the unsigned case we can compute C1+C2 with saturating arithmetic,
and InstSimplify will reduce this just to the saturation value. For
the signed case, we cannot perform the simplification if the result
of the addition overflows.
This change is part of https://reviews.llvm.org/D54534.
llvm-svn: 347773
Canonicalize ssub.sat(X, C) to ssub.sat(X, -C) if C is constant and
not signed minimum. This will help further optimizations to apply.
This change is part of https://reviews.llvm.org/D54534.
llvm-svn: 347772
Always-overflow was already determined for unsigned addition, but
not subtraction. This patch establishes parity.
This allows us to perform some additional simplifications for
signed saturating subtractions.
This change is part of https://reviews.llvm.org/D54534.
llvm-svn: 347771
If ValueTracking can determine that the add/sub can newer overflow,
replace it with the corresponding nuw/nsw add/sub.
Additionally, for the unsigned case, if ValueTracking determines
that the add/sub always overflows, replace the result with the
saturation value.
This change is part of https://reviews.llvm.org/D54534.
llvm-svn: 347770
If a saturating add intrinsic has one constant argument, make sure
it is on the RHS. This will simplify further transformations.
This change is part of https://reviews.llvm.org/D54534.
llvm-svn: 347769
Summary:
If the original reduction root instruction was vectorized, it might be
removed from the tree. It means that the insertion point may become
invalidated and the whole vectorization of the reduction leads to the
incorrect output result.
The ReductionRoot instruction must be marked as externally used so it
could not be removed. Otherwise it might cause inconsistency with the
cost model and we may end up with too optimistic optimization.
Reviewers: RKSimon, spatel, hfinkel, mkuper
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D54955
llvm-svn: 347759
InlineCost also treats them as free and the current implementation
can cause assertion failures if PHI nodes are moved outside the region
from entry BBs to the region.
It also updates the code to use the instructionsWithoutDebug iterator.
Reviewers: davidxl, davide, vsk, graham-yiu-huawei
Reviewed By: davidxl
Differential Revision: https://reviews.llvm.org/D54748
llvm-svn: 347683