When profiling a no-op incremental link of Chromium I found that the functions
computeImportForFunction and computeDeadSymbols were consuming roughly 10% of
the profile. The goal of this change is to improve the performance of those
functions by changing the map lookups that they were previously doing into
pointer dereferences.
This is achieved by changing the ValueInfo data structure to be a pointer to
an element of the global value map owned by ModuleSummaryIndex, and changing
reference lists in the GlobalValueSummary to hold ValueInfos instead of GUIDs.
This means that a ValueInfo will take a client directly to the summary list
for a given GUID.
Differential Revision: https://reviews.llvm.org/D32471
llvm-svn: 302108
The raw CodeView format references strings by "offsets", but it's
confusing what table the offset refers to. In the case of line
number information, it's an offset into a buffer of records,
and an indirection is required to get another offset into a
different table to find the final string. And in the case of
checksum information, there is no indirection, and the offset
refers directly to the location of the string in another buffer.
This would be less confusing if we always just referred to the
strings by their value, and have the library be smart enough
to correctly resolve the offsets on its own from the right
location.
This patch makes that possible. When either reading or writing,
all the user deals with are strings, and the library does the
appropriate translations behind the scenes.
llvm-svn: 302053
llvm-readobj hand rolls some CodeView parsing code for string
tables, so this patch updates it to re-use some of the newly
introduced parsing code in LLVMDebugInfoCodeView.
Differential Revision: https://reviews.llvm.org/D32772
llvm-svn: 302052
Summary:
When apps or other libraries link against a library with symbol
versions, the version string is recorded in the import table, and used
at runtime to resolve the symbol back to a library that provides that
version (vaguely like how two-level namespaces work in Mach-O). ld's
--default-symver flag tags every exported symbol with a symbol version
string equal to the library's soname. Using --default-symver means
multiple versions of libLLVM can coexist within the same process, at
least to the extent that they don't try to pass data between each
other's llvms.
As an example, imagine a language like Rust using llvm for CPU codegen,
binding to OpenGL, with Mesa as the OpenGL implementation using llvm for
R600 codegen. With --default-symver Rust and Mesa will resolve their
llvm usage to the version each was linked against, which need not match.
(Other ELF platforms like BSD and Solaris might have similar semantics,
I've not checked.)
This is based on an autoconf version of this patch by Adam Jackson.
This new option can be used to add --default-symver to the linker flags
for libLLVM.so.
Reviewers: beanz
Reviewed By: beanz
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D30997
llvm-svn: 302026
With the forthcoming codeview::StringTable which a pdb::StringTable
would hold an instance of as one member, this ambiguity becomes
confusing. Rename to PDBStringTable to avoid this.
llvm-svn: 301948
Previously we wrote line information and file checksum
information, but we did not write information about inlinee
lines and functions. This patch adds support for that.
llvm-svn: 301936
This is motivated by https://reviews.llvm.org/D32488 where I am trying
to add printing of the section type for incompatible sections to LLD
error messages. This patch allows us to use the same code in
llvm-readobj and LLD instead of duplicating the function inside LLD.
Patch by Alexander Richardson!
llvm-svn: 301921
lldb-dwarfdump gets a new "--verify" option that will verify a single file's DWARF debug info and will print out any errors that it finds. It will return an non-zero exit status if verification fails, and a zero exit status if verification succeeds. Adding the --quiet option will suppress any output the STDOUT or STDERR.
The first part of the verify does the following:
- verifies that all CU relative references (DW_FORM_ref1, DW_FORM_ref2, DW_FORM_ref4, DW_FORM_ref8, DW_FORM_ref_udata) have valid CU offsets
- verifies that all DW_FORM_ref_addr references have valid .debug_info offsets
- verifies that all DW_AT_ranges attributes have valid .debug_ranges offsets
- verifies that all DW_AT_stmt_list attributes have valid .debug_line offsets
- verifies that all DW_FORM_strp attributes have valid .debug_str offsets
Unit tests were added for each of the above cases.
Differential Revision: https://reviews.llvm.org/D32707
llvm-svn: 301844
This is to prepare for an upcoming change which uses pointers instead of
GUIDs to represent references.
Differential Revision: https://reviews.llvm.org/D32469
llvm-svn: 301843
In preparation for introducing writing capabilities for each of
these classes, I would like to adopt a Foo / FooRef naming
convention, where Foo indicates that the class can manipulate and
serialize Foos, and FooRef indicates that it is an immutable view of
an existing Foo. In other words, Foo is a writer and FooRef is a
reader. This patch names some existing readers to conform to the
FooRef convention, while offering no functional change.
llvm-svn: 301810
There is a lot of duplicate code for printing line info between
YAML and the raw output printer. This introduces a base class
that can be shared between the two, and makes some minor
cleanups in the process.
llvm-svn: 301728
The llvm-readobj parsing code currently exists in our CodeView
library, so we use that to parse instead of re-writing the logic
in the tool.
llvm-svn: 301718
When dumping raw data from a stream, you might know the offset
of a certain record you're interested in, as well as how long
that record is. Previously, you had to dump the entire stream
and wade through the bytes to find the interesting record.
This patch allows you to specify an offset and length on the
command line, and it will only dump the requested range.
llvm-svn: 301607
Reviewers: zturner, hansw, hans
Reviewed By: hans
Subscribers: hans, llvm-commits
Differential Revision: https://reviews.llvm.org/D32611
llvm-svn: 301595
This patch dumps the raw bytes of the .rsrc sections that
are present in COFF object and executable files. Subsequent
patches will parse this information and dump in a more human
readable format.
Differential Revision: https://reviews.llvm.org/D32463
Patch By: Eric Beckmann
llvm-svn: 301578
Previously parsing of these were all grouped together into a
single master class that could parse any type of debug info
fragment.
With writing forthcoming, the complexity of each individual
fragment is enough to warrant them having their own classes so
that reading and writing of each fragment type can be grouped
together, but isolated from the code for reading and writing
other fragment types.
In doing so, I found a place where parsing code was duplicated
for the FileChecksums fragment, across llvm-readobj and the
CodeView library, and one of the implementations had a bug.
Now that the codepaths are merged, the bug is resolved.
Differential Revision: https://reviews.llvm.org/D32547
llvm-svn: 301557
We have a lot of very similarly named classes related to
dealing with module debug info. This patch has NFC, it just
renames some classes to be more descriptive (albeit slightly
more to type). The mapping from old to new class names is as
follows:
Old | New
ModInfo | DbiModuleDescriptor
ModuleSubstream | ModuleDebugFragment
ModStream | ModuleDebugStream
With the corresponding Builder classes renamed accordingly.
Differential Revision: https://reviews.llvm.org/D32506
llvm-svn: 301555
DISubprogram currently has 10 pointer operands, several of which are
often nullptr. This patch reduces the amount of memory allocated by
DISubprogram by rearranging the operands such that containing type,
template params, and thrown types come last, and are only allocated
when they are non-null (or followed by non-null operands).
This patch also eliminates the entirely unused DisplayName operand.
This saves up to 4 pointer operands per DISubprogram. (I tried
measuring the effect on peak memory usage on an LTO link of an X86
llc, but the results were very noisy).
This reapplies r301498 with an attempted workaround for g++.
Differential Revision: https://reviews.llvm.org/D32560
llvm-svn: 301501
DISubprogram currently has 10 pointer operands, several of which are
often nullptr. This patch reduces the amount of memory allocated by
DISubprogram by rearranging the operands such that containing type,
template params, and thrown types come last, and are only allocated
when they are non-null (or followed by non-null operands).
This patch also eliminates the entirely unused DisplayName operand.
This saves up to 4 pointer operands per DISubprogram. (I tried
measuring the effect on peak memory usage on an LTO link of an X86
llc, but the results were very noisy).
llvm-svn: 301498
We were already parsing and dumping this to the human readable
format, but not to the YAML format. This does so, in preparation
for reading it in and reconstructing the line information from
YAML.
llvm-svn: 301357
This may trigger a segfault in llvm-objdump when the line number stored
in debug infromation points beyond the end of file; lines in LineBuffer
are stored in std::vector which is allocated in chunks, so even if the
debug info points beyond the end of the file, this doesn't necessarily
trigger the segfault unless the line number points beyond the allocated
space.
Differential Revision: https://reviews.llvm.org/D32466
llvm-svn: 301347
The *real* difference between these two was that
a) The "graphical" dumper could recurse, while the text one could
not.
b) The "text" dumper could display nested types and functions,
while the graphical one could not.
Merge these two so that there is only one dumper that can recurse
arbitrarily deep and optionally display nested types or not.
llvm-svn: 301204
This reworks the way virtual bases are handled, and also the way
padding is detected across multiple levels of aggregates, producing
a much more accurate result.
llvm-svn: 301203
I found this when investigated "Bug 32319 - .gdb_index is broken/incomplete" for LLD.
When we have object file with .debug_ranges section it may be filled with zeroes.
Relocations are exist in file to relocate this zeroes into real values later, but until that
a pair of zeroes is treated as terminator. And DWARF parser thinks there is no ranges at all
when I am trying to collect address ranges for building .gdb_index.
Solution implemented in this patch is to take relocations in account when parsing ranges.
Differential revision: https://reviews.llvm.org/D32228
llvm-svn: 301170
Summary:
This is a tool for comparing the function graphs produced by the
llvm-xray graph too. It takes the form of a new subcommand of the
llvm-xray tool 'graph-diff'.
This initial version of the patch is very rough, but it is close to
feature complete.
Depends on D29363
Reviewers: dblaikie, dberris
Reviewed By: dberris
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D29320
llvm-svn: 301160
Since Split DWARF needs to name the actual .dwo file that is generated,
it can't be known at the time the llvm::Module is produced as it may be
merged with other Modules before the object is generated and that object
may be generated with any name.
By passing the Split DWARF file name when LLVM is producing object code
the .dwo file name in the object file can match correctly.
The support for Split DWARF for implicit modules remains the same -
using metadata to store the dwo name and dwo id so that potentially
multiple skeleton CUs referring to different dwo files can be generated
from one llvm::Module.
llvm-svn: 301062
This marks the beginning of an effort to port remaining
MSVC toolchain miscellaneous utilities to all platforms.
Currently clang-cl shells out to certain additional tools
such as the IDL compiler, resource compiler, and a few
other tools, but as these tools are Windows-only it
limits the ability of clang to target Windows on other
platforms. having a full suite of these tools directly
in LLVM should eliminate this constraint.
The current implementation provides no actual functionality,
it is just an empty skeleton executable for the purposes
of making incremental changes.
Differential Revision: https://reviews.llvm.org/D32095
Patch by Eric Beckmann (ecbeckmann@google.com)
llvm-svn: 301004
Associate the version-when-defined with definitions of standard DWARF
constants. Identify the "vendor" for DWARF extensions.
Use this information to verify FORMs in .debug_abbrev are defined as
of the DWARF version specified in the associated unit.
Removed two tests that had specified DWARF v1 (which essentially does
not exist).
Differential Revision: http://reviews.llvm.org/D30785
llvm-svn: 300875
Summary:
This allows us to, if the symbol names are available in the binary, be
able to provide the function name in the YAML output.
Reviewers: dblaikie, pelikan
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32153
llvm-svn: 300624
Summary:
This patch adds a very simple linker script to version the lib's symbols
and thus trying to avoid crashes if an application loads two different
LLVM versions (as long as they do not share data between them).
Note that we deliberately *don't* make LLVM_5.0 depend on LLVM_4.0:
they're incompatible and the whole point of this patch is
to tell the linker that.
Avoid unexpected crashes when two LLVM versions are used in the same process.
Author: Rebecca N. Palmer <rebecca_palmer@zoho.com>
Author: Lisandro Damían Nicanor Pérez Meyer <lisandro@debian.org>
Author: Sylvestre Ledru <sylvestre@debian.org>
Bug-Debian: https://bugs.debian.org/848368
Reviewers: beanz, rnk
Reviewed By: rnk
Subscribers: mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D31524
llvm-svn: 300496
Add a top-level STRTAB block containing a string table blob, and start storing
strings for module codes FUNCTION, GLOBALVAR, ALIAS, IFUNC and COMDAT in
the string table.
This change allows us to share names between globals and comdats as well
as between modules, and improves the efficiency of loading bitcode files by
no longer using a bit encoding for symbol names. Once we start writing the
irsymtab to the bitcode file we will also be able to share strings between
it and the module.
On my machine, link time for Chromium for Linux with ThinLTO decreases by
about 7% for no-op incremental builds or about 1% for full builds. Total
bitcode file size decreases by about 3%.
As discussed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2017-April/111732.html
Differential Revision: https://reviews.llvm.org/D31838
llvm-svn: 300464
This is a version of D32090 that unifies all of the
`getInstrProf*SectionName` helper functions. (Note: the build failures
which D32090 would have addressed were fixed with r300352.)
We should unify these helper functions because they are hard to use in
their current form. E.g we recently introduced more helpers to fix
section naming for COFF files. This scheme doesn't totally succeed at
hiding low-level details about section naming, so we should switch to an
API that is easier to maintain.
This is not an NFC commit because it fixes llvm-cov's testing support
for COFF files (this falls out of the API change naturally). This is an
area where we lack tests -- I will see about adding one as a follow up.
Testing: check-clang, check-profile, check-llvm.
Differential Revision: https://reviews.llvm.org/D32097
llvm-svn: 300381
Now that the libObect support for wasm is better we can
have readobj and nm produce more useful output too.
Differential Revision: https://reviews.llvm.org/D31514
llvm-svn: 300365