This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
The new format is changeAddrMode_xx_yy, where xx is the current mode,
and yy is the new one.
Old name: New name:
getBaseWithImmOffset changeAddrMode_abs_io
getAbsoluteForm changeAddrMode_io_abs
getBaseWithRegOffset changeAddrMode_io_rr
xformRegToImmOffset changeAddrMode_rr_io
getBaseWithLongOffset changeAddrMode_rr_ur
getRegShlForm changeAddrMode_ur_rr
llvm-svn: 315013
This removes the duplicate HVX instruction set for the 128-byte mode.
Single instruction set now works for both modes (64- and 128-byte).
llvm-svn: 313362
The packetizer needs to convert .cur instruction to its regular form if
the use is not in the same packet as the .cur. The code in the packetizer
handles one type of .cur, which is the vector load case. This patch
updates the packetizer so that it can undo all the .cur instructions.
In the test case, the .cur is the 128B version, but there are also the
post-increment versions.
Patch by Brendon Cahoon.
llvm-svn: 302032
Software pipelining is an optimization for improving ILP by
overlapping loop iterations. Swing Modulo Scheduling (SMS) is
an implementation of software pipelining that attempts to
reduce register pressure and generate efficient pipelines with
a low compile-time cost.
This implementaion of SMS is a target-independent back-end pass.
When enabled, the pass should run just prior to the register
allocation pass, while the machine IR is in SSA form. If the pass
is successful, then the original loop is replaced by the optimized
loop. The optimized loop contains one or more prolog blocks, the
pipelined kernel, and one or more epilog blocks.
This pass is enabled for Hexagon only. To enable for other targets,
a couple of target specific hooks must be implemented, and the
pass needs to be called from the target's TargetMachine
implementation.
Differential Review: http://reviews.llvm.org/D16829
llvm-svn: 277169
The Hexagon schedulers need to handle instructions with a latency
of 0 or 2 more accurately. The problem, in v60, is that a dependence
between two instructions with a 2 cycle latency can use a .cur version
of the source to achieve a 0 cycle latency when the use is in the
same packet. Any othe use, must be at least 2 packets later, or a
stall occurs. In other words, the compiler does not want to schedule
the dependent instructions 1 cycle later.
To achieve this, the latency adjustment code allows only a single
dependence to have a zero latency. All other instructions have the
other value, which is typically 2 cycles. We use a heuristic to
determine which instruction gets the 0 latency.
The Hexagon machine scheduler was also changed to increase the cost
associated with 0 latency dependences than can be scheduled in the
same packet.
Patch by Brendon Cahoon.
llvm-svn: 275625
On Hexagon is it legal to packetize the instructions setting up call
arguments with the call instruction itself. This was already done,
except for tail calls. Make sure tail calls are handled as well.
llvm-svn: 275458
This is mostly a mechanical change to make TargetInstrInfo API take
MachineInstr& (instead of MachineInstr* or MachineBasicBlock::iterator)
when the argument is expected to be a valid MachineInstr. This is a
general API improvement.
Although it would be possible to do this one function at a time, that
would demand a quadratic amount of churn since many of these functions
call each other. Instead I've done everything as a block and just
updated what was necessary.
This is mostly mechanical fixes: adding and removing `*` and `&`
operators. The only non-mechanical change is to split
ARMBaseInstrInfo::getOperandLatencyImpl out from
ARMBaseInstrInfo::getOperandLatency. Previously, the latter took a
`MachineInstr*` which it updated to the instruction bundle leader; now,
the latter calls the former either with the same `MachineInstr&` or the
bundle leader.
As a side effect, this removes a bunch of MachineInstr* to
MachineBasicBlock::iterator implicit conversions, a necessary step
toward fixing PR26753.
Note: I updated WebAssembly, Lanai, and AVR (despite being
off-by-default) since it turned out to be easy. I couldn't run tests
for AVR since llc doesn't link with it turned on.
llvm-svn: 274189
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.
llvm-svn: 272512
Change TargetInstrInfo API to take `MachineInstr&` instead of
`MachineInstr*` in the functions related to predicated instructions
(I'll try to come back later and get some of the rest). All of these
functions require non-null parameters already, so references are more
clear. As a bonus, this happens to factor away a host of implicit
iterator => pointer conversions.
No functionality change intended.
llvm-svn: 261605
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
Summary:
This was a longstanding FIXME and is a necessary precursor to cases
where foldOperandImpl may have to create more than one instruction
(e.g. to constrain a register class). This is the split out NFC changes from
D6262.
Reviewers: pete, ributzka, uweigand, mcrosier
Reviewed By: mcrosier
Subscribers: mcrosier, ted, llvm-commits
Differential Revision: http://reviews.llvm.org/D10174
llvm-svn: 239336
Improved the AnalyzeBranch, InsertBranch, and RemoveBranch
functions in order to handle more of our branch instructions.
This requires changes to analyzeCompare and PredicateInstructions.
Specifically, we've added support for new value compare jumps,
improved handling of endloop, added more compare instructions,
and improved support for predicate instructions.
Differential Revision: http://reviews.llvm.org/D9559
llvm-svn: 236876
Use a loop instruction with a constant extender for a hardware
loop instruction that is too far away from the start of the loop.
This is cheaper than changing the SA register value.
Differential Revision: http://reviews.llvm.org/D9262
llvm-svn: 235882