Switch over to the "*-apple-macosx" for desktop and "*-apple-ios" for iOS triples.
Also make the selection process for auto selecting platforms based off of an arch much better.
llvm-svn: 156354
<rdar://problem/11285931>
Use the DWARRF end prologue markers when trying to skip prologue instructions instead of blindly using the second line table address entry.
llvm-svn: 155600
the debug information individual Decls came from.
We've had a metadata infrastructure for a while,
which was intended to solve a problem we've since
dealt with in a different way. (It was meant to
keep track of which definition of an Objective-C
class was the "true" definition, but we now find
it by searching the symbols for the class symbol.)
The metadata is attached to the ExternalASTSource,
which means it has a one-to-one correspondence with
AST contexts.
I've repurposed the metadata infrastructure to
hold the object file and DIE offset for the DWARF
information corresponding to a Decl. There are
methods in ClangASTContext that get and set this
metadata, and the ClangASTImporter is capable of
tracking down the metadata for Decls that have been
copied out of the debug information into the
parser's AST context without using any additional
memory.
To see the metadata, you just have to enable the
expression log:
-
(lldb) log enable lldb expr
-
and watch the import messages. The high 32 bits
of the metadata indicate the index of the object
file in its containing DWARFDebugMap; I have also
added a log which you can use to track that mapping:
-
(lldb) log enable dwarf map
-
This adds 64 bits per Decl, which in my testing
hasn't turned out to be very much (debugging Clang
produces around 6500 Decls in my tests). To track
how much data is being consumed, I've also added a
global variable g_TotalSizeOfMetadata which tracks
the total number of Decls that have metadata in all
active AST contexts.
Right now this metadata is enormously useful for
tracking down bugs in the debug info parser. In the
future I also want to use this information to provide
more intelligent error messages instead of printing
empty source lines wherever Clang refers to the
location where something is defined.
llvm-svn: 154634
correctly if the setter/getter were not present
in the debug information. The fixes are as follows:
- We not only look for the method by its full name,
but also look for automatically-generated methods
when searching for a selector in an Objective-C
interface. This is necessary to find accessors.
- Extract the getter and setter name from the
DW_TAG_APPLE_Property declaration in the DWARF
if they are present; generate them if not.
llvm-svn: 154067
Fixed an issue where there were more than one way to get a CompileUnitSP created when using SymbolFileDWARF with SymbolFileDWARFDebugMap. This led to an assertion that would fire under certain conditions. Now there is only one way to create the compile unit and it will "do the right thing".
llvm-svn: 153908
Fixed an issue that could cause circular type parsing that will assert and kill LLDB.
Prior to this fix the DWARF parser would always create class types and not start their definitions (for both C++ and ObjC classes) until we were asked to complete the class later. When we had cases like:
class A
{
class B
{
};
};
We would alway try to complete A before specifying "A" as the decl context for B. Turns out we can just start the definition and still not complete the class since we can check the TagDecl::isCompleteDefinition() function. This only works for C++ types. This means we will not be pulling in the full definition of parent classes all the time and should help with our memory consumption and also reduce the amount of debug info we have to parse.
I also reduced redundant code that was checking in a lldb::clang_type_t was a possible C++ dynamic type since it was still completing the type, just to see if it was dynamic. This was fixed in another function that was checking for a type being dynamic as an ObjC or a C++ type, but there was dedicated fucntion for C++ that we missed.
llvm-svn: 153713
Line tables when using DWARF in .o files can be wrong when two entries get moved around by the compiler. This was due to incorrect logic in the line entry comparison operator.
llvm-svn: 153685
for unbacked properties. We support two variants:
one in which the getter/setter are provided by
selector ("mySetter:") and one in which the
getter/setter are provided by signature
("-[MyClass mySetter:]").
llvm-svn: 153675
1 - sections only get a valid VM size if they have SHF_ALLOC in the section flags
2 - symbol names are marked as mangled if they start with "_Z"
Also fixed the DWARF parser to correctly use the section file size when extracting the DWARF.
llvm-svn: 153496
Fixed type lookups to "do the right thing". Prior to this fix, looking up a type using "foo::bar" would result in a type list that contains all types that had "bar" as a basename unless the symbol file was able to match fully qualified names (which our DWARF parser does not).
This fix will allow type matches to be made based on the basename and then have the types that don't match filtered out. Types by name can be fully qualified, or partially qualified with the new "bool exact_match" parameter to the Module::FindTypes() method.
This fixes some issue that we discovered with dynamic type resolution as well as improves the overall type lookups in LLDB.
llvm-svn: 153482
Adding a test case that checks that we do not complete types before due time. This should help us track cases similar to the cascading data formatters.
llvm-svn: 153363
Fixed a performance regression when dynamic types are enable where we would ask a C++ type if it can possibly be dynamic. Previously we would force the type to complete itself and then anwwer the question definitively. Now we ask the type if it is already complete and only definitively answer the question for completed types and just say "yes" for non-complete C++ types. We also always now answer yes for Objective C classes and do not complete those types either.
llvm-svn: 153284
LLDB can match incorrect line table entries when an address is between two valid line entries (in the gap between the valid debug info), now it doesn't!
llvm-svn: 153077
Simplify the locking strategy for Module and its owned objects to always use the Module's mutex to avoid A/B deadlocks. We had a case where a symbol vendor was locking itself and then calling a function that would try to get it's Module's mutex and at the same time another thread had the Module mutex that was trying to get the SymbolVendor mutex. Now any classes that inherit from ModuleChild should use the module lock using code like:
void
ModuleChildSubclass::Function
{
ModuleSP module_sp(GetModule());
if (module_sp)
{
lldb_private::Mutex::Locker locker(module_sp->GetMutex());
... do work here...
}
}
This will help avoid deadlocks by using as few locks as possible for a module and all its child objects and also enforce detecting if a module has gone away (the ModuleSP will be returned empty if the weak_ptr does refer to a valid object anymore).
llvm-svn: 152679
This fix really needed to happen as a previous fix I had submitted for
calculating symbol sizes made many symbols appear to have zero size since
the function that was calculating the symbol size was calling another function
that would cause the calculation to happen again. This resulted in some symbols
having zero size when they shouldn't. This could then cause infinite stack
traces and many other side affects.
llvm-svn: 152244
expression command doesn't handle xmm or stmm registers...
o Update ClangASTContext::GetBuiltinTypeForEncodingAndBitSize() to now handle eEncodingVector.
o Modify RegisterValue::SetFromMemoryData() to fix the subtle error due to unitialized variables.
o Add a test file for "expr $xmm0".
llvm-svn: 152190
This was done in SBTarget:
lldb::SBInstructionList
lldb::SBTarget::ReadInstructions (lldb::SBAddress base_addr, uint32_t count);
Also cleaned up a few files in the LLDB.framework settings.
llvm-svn: 152152
so that the expression parser can look up members
of anonymous structs correctly. This meant creating
all the proper IndirectFieldDecls in each Record
after it has been completely populated with members.
llvm-svn: 151868
allocations by section. We install these sections
in the target process and inform the JIT of their
new locations.
Also removed some unused variable warnings.
llvm-svn: 151789
more of the local path, platform path, associated symbol file, UUID, arch,
object name and object offset. This allows many of the calls that were
GetSharedModule to reduce the number of arguments that were used in a call
to these functions. It also allows a module to be created with a ModuleSpec
which allows many things to be specified prior to any accessors being called
on the Module class itself.
I was running into problems when adding support for "target symbol add"
where you can specify a stand alone debug info file after debugging has started
where I needed to specify the associated symbol file path and if I waited until
after construction, the wrong symbol file had already been located. By using
the ModuleSpec it allows us to construct a module with as little or as much
information as needed and not have to change the parameter list.
llvm-svn: 151476
I started work on being able to add symbol files after a debug session
had started with a new "target symfile add" command and quickly ran into
problems with stale Address objects in breakpoint locations that had
lldb_private::Section pointers into modules that had been removed or
replaced. This also let to grabbing stale modules from those sections.
So I needed to thread harded the Address, Section and related objects.
To do this I modified the ModuleChild class to now require a ModuleSP
on initialization so that a weak reference can created. I also changed
all places that were handing out "Section *" to have them hand out SectionSP.
All ObjectFile, SymbolFile and SymbolVendors were inheriting from ModuleChild
so all of the find plug-in, static creation function and constructors now
require ModuleSP references instead of Module *.
Address objects now have weak references to their sections which can
safely go stale when a module gets destructed.
This checkin doesn't complete the "target symfile add" command, but it
does get us a lot clioser to being able to do such things without a high
risk of crashing or memory corruption.
llvm-svn: 151336
Objective-C classes. This allows LLDB to find
ivars declared in class extensions in modules other
than where the debugger is currently stopped (we
already supported this when the debugger was
stopped in the same module as the definition).
This involved the following main changes:
- The ObjCLanguageRuntime now knows how to hunt
for the authoritative version of an Objective-C
type. It looks for the symbol indicating a
definition, and then gets the type from the
module containing that symbol.
- ValueObjects now report their type with a
potential override, and the override is set if
the type of the ValueObject is an Objective-C
class or pointer type that is defined somewhere
other than the original reported type. This
means that "frame variable" will always use the
complete type if one is available.
- The ClangASTSource now looks for the complete
type when looking for ivars. This means that
"expr" will always use the complete type if one
is available.
- I added a testcase that verifies that both
"frame variable" and "expr" work.
llvm-svn: 151214
objects for the backlink to the lldb_private::Process. The issues we were
running into before was someone was holding onto a shared pointer to a
lldb_private::Thread for too long, and the lldb_private::Process parent object
would get destroyed and the lldb_private::Thread had a "Process &m_process"
member which would just treat whatever memory that used to be a Process as a
valid Process. This was mostly happening for lldb_private::StackFrame objects
that had a member like "Thread &m_thread". So this completes the internal
strong/weak changes.
Documented the ExecutionContext and ExecutionContextRef classes so that our
LLDB developers can understand when and where to use ExecutionContext and
ExecutionContextRef objects.
llvm-svn: 151009
the lldb_private::StackFrame objects hold onto a weak pointer to the thread
object. The lldb_private::StackFrame objects the the most volatile objects
we have as when we are doing single stepping, frames can often get lost or
thrown away, only to be re-created as another object that still refers to the
same frame. We have another bug tracking that. But we need to be able to
have frames no longer be able to get the thread when they are not part of
a thread anymore, and this is the first step (this fix makes that possible
but doesn't implement it yet).
Also changed lldb_private::ExecutionContextScope to return shared pointers to
all objects in the execution context to further thread harden the internals.
llvm-svn: 150871
indicate whether inline functions are desired.
This allows the expression parser, for instance,
to filter out inlined functions when looking for
functions it can call.
llvm-svn: 150279
user space programs. The core file support is implemented by making a process
plug-in that will dress up the threads and stack frames by using the core file
memory.
Added many default implementations for the lldb_private::Process functions so
that plug-ins like the ProcessMachCore don't need to override many many
functions only to have to return an error.
Added new virtual functions to the ObjectFile class for extracting the frozen
thread states that might be stored in object files. The default implementations
return no thread information, but any platforms that support core files that
contain frozen thread states (like mach-o) can make a module using the core
file and then extract the information. The object files can enumerate the
threads and also provide the register state for each thread. Since each object
file knows how the thread registers are stored, they are responsible for
creating a suitable register context that can be used by the core file threads.
Changed the process CreateInstace callbacks to return a shared pointer and
to also take an "const FileSpec *core_file" parameter to allow for core file
support. This will also allow for lldb_private::Process subclasses to be made
that could load crash logs. This should be possible on darwin where the crash
logs contain all of the stack frames for all of the threads, yet the crash
logs only contain the registers for the crashed thrad. It should also allow
some variables to be viewed for the thread that crashed.
llvm-svn: 150154
working, but not functions). I need to check on a few things to make sure
I am registering everything correctly in the right order and in the right
contexts.
llvm-svn: 149858
interface (.i) files for each class.
Changed the FindFunction class from:
uint32_t
SBTarget::FindFunctions (const char *name,
uint32_t name_type_mask,
bool append,
lldb::SBSymbolContextList& sc_list)
uint32_t
SBModule::FindFunctions (const char *name,
uint32_t name_type_mask,
bool append,
lldb::SBSymbolContextList& sc_list)
To:
lldb::SBSymbolContextList
SBTarget::FindFunctions (const char *name,
uint32_t name_type_mask = lldb::eFunctionNameTypeAny);
lldb::SBSymbolContextList
SBModule::FindFunctions (const char *name,
uint32_t name_type_mask = lldb::eFunctionNameTypeAny);
This makes the API easier to use from python. Also added the ability to
append a SBSymbolContext or a SBSymbolContextList to a SBSymbolContextList.
Exposed properties for lldb.SBSymbolContextList in python:
lldb.SBSymbolContextList.modules => list() or all lldb.SBModule objects in the list
lldb.SBSymbolContextList.compile_units => list() or all lldb.SBCompileUnits objects in the list
lldb.SBSymbolContextList.functions => list() or all lldb.SBFunction objects in the list
lldb.SBSymbolContextList.blocks => list() or all lldb.SBBlock objects in the list
lldb.SBSymbolContextList.line_entries => list() or all lldb.SBLineEntry objects in the list
lldb.SBSymbolContextList.symbols => list() or all lldb.SBSymbol objects in the list
This allows a call to the SBTarget::FindFunctions(...) and SBModule::FindFunctions(...)
and then the result can be used to extract the desired information:
sc_list = lldb.target.FindFunctions("erase")
for function in sc_list.functions:
print function
for symbol in sc_list.symbols:
print symbol
Exposed properties for the lldb.SBSymbolContext objects in python:
lldb.SBSymbolContext.module => lldb.SBModule
lldb.SBSymbolContext.compile_unit => lldb.SBCompileUnit
lldb.SBSymbolContext.function => lldb.SBFunction
lldb.SBSymbolContext.block => lldb.SBBlock
lldb.SBSymbolContext.line_entry => lldb.SBLineEntry
lldb.SBSymbolContext.symbol => lldb.SBSymbol
Exposed properties for the lldb.SBBlock objects in python:
lldb.SBBlock.parent => lldb.SBBlock for the parent block that contains
lldb.SBBlock.sibling => lldb.SBBlock for the sibling block to the current block
lldb.SBBlock.first_child => lldb.SBBlock for the first child block to the current block
lldb.SBBlock.call_site => for inline functions, return a lldb.declaration object that gives the call site file, line and column
lldb.SBBlock.name => for inline functions this is the name of the inline function that this block represents
lldb.SBBlock.inlined_block => returns the inlined function block that contains this block (might return itself if the current block is an inlined block)
lldb.SBBlock.range[int] => access the address ranges for a block by index, a list() with start and end address is returned
lldb.SBBlock.ranges => an array or all address ranges for this block
lldb.SBBlock.num_ranges => the number of address ranges for this blcok
SBFunction objects can now get the SBType and the SBBlock that represents the
top scope of the function.
SBBlock objects can now get the variable list from the current block. The value
list returned allows varaibles to be viewed prior with no process if code
wants to check the variables in a function. There are two ways to get a variable
list from a SBBlock:
lldb::SBValueList
SBBlock::GetVariables (lldb::SBFrame& frame,
bool arguments,
bool locals,
bool statics,
lldb::DynamicValueType use_dynamic);
lldb::SBValueList
SBBlock::GetVariables (lldb::SBTarget& target,
bool arguments,
bool locals,
bool statics);
When a SBFrame is used, the values returned will be locked down to the frame
and the values will be evaluated in the context of that frame.
When a SBTarget is used, global an static variables can be viewed without a
running process.
llvm-svn: 149853