Commit Graph

316 Commits

Author SHA1 Message Date
Craig Topper 856fd68690 [LoopIdiomRecognize] When looking for 'x & (x -1)' for popcnt, make sure the left hand side of the 'and' matches the left hand side of the 'subtract'
llvm-svn: 331437
2018-05-03 05:48:49 +00:00
Craig Topper 8ef2abdbc4 [LoopIdiomRecognize] Remove unnecessary cast from BinaryOperator to Instruction. NFC
BinaryOperator is a sub class of Instruction. We don't need an explicit cast back to Instruction.

llvm-svn: 331432
2018-05-03 05:00:18 +00:00
Xin Tong 99c4e2f364 [LIR] Reorder header. NFC
llvm-svn: 329530
2018-04-08 13:19:53 +00:00
David Blaikie 2be3922807 Fix a couple of layering violations in Transforms
Remove #include of Transforms/Scalar.h from Transform/Utils to fix layering.

Transforms depends on Transforms/Utils, not the other way around. So
remove the header and the "createStripGCRelocatesPass" function
declaration (& definition) that is unused and motivated this dependency.

Move Transforms/Utils/Local.h into Analysis because it's used by
Analysis/MemoryBuiltins.cpp.

llvm-svn: 328165
2018-03-21 22:34:23 +00:00
Daniel Neilson fb99a493be [LoopIdiom] Be more aggressive when setting alignment in memcpy
Summary:
This change is part of step five in the series of changes to remove alignment argument from
memcpy/memmove/memset in favour of alignment attributes. In particular, this changes the
LoopIdiom pass to cease using the old IRBuilder CreateMemCpy single-alignment APIs in
favour of the new API that allows setting source and destination alignments independently.
This allows us to be slightly more aggressive in setting the alignment of memcpy calls that
loop idiom creates.

Steps:
Step 1) Remove alignment parameter and create alignment parameter attributes for
memcpy/memmove/memset. ( rL322965, rC322964, rL322963 )
Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing
source and dest alignments. ( rL323597 )
Step 3) Update Clang to use the new IRBuilder API. ( rC323617 )
Step 4) Update Polly to use the new IRBuilder API. ( rL323618 )
Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API,
and those that use use MemIntrinsicInst::[get|set]Alignment() to use [get|set]DestAlignment()
and [get|set]SourceAlignment() instead. ( rL323886, rL323891, rL324148, rL324273, rL324278,
rL324384, rL324395, rL324402 )
Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the
MemIntrinsicInst::[get|set]Alignment() methods.

Reference
   http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html
   http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

llvm-svn: 324626
2018-02-08 17:33:08 +00:00
Hiroshi Inoue c8e9245816 [NFC] fix trivial typos in comments and documents
"to to" -> "to"

llvm-svn: 323628
2018-01-29 05:17:03 +00:00
Alina Sbirlea 193429f0c8 [ModRefInfo] Make enum ModRefInfo an enum class [NFC].
Summary:
Make enum ModRefInfo an enum class. Changes to ModRefInfo values should
be done using inline wrappers.
This should prevent future bit-wise opearations from being added, which can be more error-prone.

Reviewers: sanjoy, dberlin, hfinkel, george.burgess.iv

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D40933

llvm-svn: 320107
2017-12-07 22:41:34 +00:00
Alina Sbirlea 18fea013de [ModRefInfo] Do not use ModRefInfo result in if conditions as this makes
assumptions about the values in the enum. Replace with wrapper returning
bool [NFC].

llvm-svn: 319949
2017-12-06 19:56:37 +00:00
Alina Sbirlea 63d2250a42 Modify ModRefInfo values using static inline method abstractions [NFC].
Summary:
The aim is to make ModRefInfo checks and changes more intuitive
and less error prone using inline methods that abstract the bit operations.

Ideally ModRefInfo would become an enum class, but that change will require
a wider set of changes into FunctionModRefBehavior.

Reviewers: sanjoy, george.burgess.iv, dberlin, hfinkel

Subscribers: nlopes, llvm-commits

Differential Revision: https://reviews.llvm.org/D40749

llvm-svn: 319821
2017-12-05 20:12:23 +00:00
Jonas Paulsson f0ff20f1f0 Use getStoreSize() in various places instead of 'BitSize >> 3'.
This is needed for cases when the memory access is not as big as the width of
the data type. For instance, storing i1 (1 bit) would be done in a byte (8
bits).

Using 'BitSize >> 3' (or '/ 8') would e.g. give the memory access of an i1 a
size of 0, which for instance makes alias analysis return NoAlias even when
it shouldn't.

There are no tests as this was done as a follow-up to the bugfix for the case
where this was discovered (r318824). This handles more similar cases.

Review: Björn Petterson
https://reviews.llvm.org/D40339

llvm-svn: 319173
2017-11-28 14:44:32 +00:00
Daniel Neilson 6e4aa1e481 Expand IRBuilder interface for atomic memcpy to require pointer alignments. (NFC)
Summary:
 The specification of the @llvm.memcpy.element.unordered.atomic intrinsic requires
that the pointer arguments have alignments of at least the element size. The existing
IRBuilder interface to create a call to this intrinsic does not allow for providing
the alignment of these pointer args. Having an interface that makes it easy to
construct invalid intrinsic calls doesn't seem sensible, so this patch simply
adds the requirement that one provide the argument alignments when using IRBuilder
to create atomic memcpy calls.

llvm-svn: 317918
2017-11-10 19:38:12 +00:00
Evgeny Stupachenko d699de2b50 The patch fixes PR35131
Summary:

Fix a misprint which led to false CTLZ recognition.

Reviewers: craig.topper

Differential Revision: https://reviews.llvm.org/D39585

From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 317348
2017-11-03 18:50:03 +00:00
Eugene Zelenko dd40f5e7c1 [Transforms] Fix some Clang-tidy modernize and Include What You Use warnings; other minor fixes (NFC).
llvm-svn: 315940
2017-10-16 21:34:24 +00:00
Chandler Carruth 1dc34c6d80 [LIR] Teach LIR to avoid extending the BE count prior to adding one to
it when safe.

Very often the BE count is the trip count minus one, and the plus one
here should fold with that minus one. But because the BE count might in
theory be UINT_MAX or some such, adding one before we extend could in
some cases wrap to zero and break when we scale things.

This patch checks to see if it would be safe to add one because the
specific case that would cause this is guarded for prior to entering the
preheader. This should handle essentially all of the common loop idioms
coming out of C/C++ code once canonicalized by LLVM.

Before this patch, both forms of loop in the added test cases ended up
subtracting one from the size, extending it, scaling it up by 8 and then
adding 8 back onto it. This is really silly, and it turns out made it
all the way into generated code very often, so this is a surprisingly
important cleanup to do.

Many thanks to Sanjoy for showing me how to do this with SCEV.

Differential Revision: https://reviews.llvm.org/D35758

llvm-svn: 308968
2017-07-25 10:48:32 +00:00
Craig Topper 79ab643da8 [Constants] If we already have a ConstantInt*, prefer to use isZero/isOne/isMinusOne instead of isNullValue/isOneValue/isAllOnesValue inherited from Constant. NFCI
Going through the Constant methods requires redetermining that the Constant is a ConstantInt and then calling isZero/isOne/isMinusOne.

llvm-svn: 307292
2017-07-06 18:39:47 +00:00
Daniel Neilson 3faabbbe85 [Atomics] Rename and change prototype for atomic memcpy intrinsic
Summary:

Background: http://lists.llvm.org/pipermail/llvm-dev/2017-May/112779.html

This change is to alter the prototype for the atomic memcpy intrinsic. The prototype itself is being changed to more closely resemble the semantics and parameters of the llvm.memcpy intrinsic -- to ease later combination of the llvm.memcpy and atomic memcpy intrinsics. Furthermore, the name of the atomic memcpy intrinsic is being changed to make it clear that it is not a generic atomic memcpy, but specifically a memcpy is unordered atomic.

Reviewers: reames, sanjoy, efriedma

Reviewed By: reames

Subscribers: mzolotukhin, anna, llvm-commits, skatkov

Differential Revision: https://reviews.llvm.org/D33240

llvm-svn: 305558
2017-06-16 14:43:59 +00:00
Anna Thomas b2a212c070 [Atomics][LoopIdiom] Recognize unordered atomic memcpy
Summary:
Expanding the loop idiom test for memcpy to also recognize
unordered atomic memcpy. The only difference for recognizing
an unordered atomic memcpy and instead of a normal memcpy is
that the loads and/or stores involved are unordered atomic operations.

Background:  http://lists.llvm.org/pipermail/llvm-dev/2017-May/112779.html

Patch by Daniel Neilson!

Reviewers: reames, anna, skatkov

Reviewed By: reames, anna

Subscribers: llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D33243

llvm-svn: 304806
2017-06-06 16:45:25 +00:00
Anna Thomas 777bb90bdc Revert "[Atomics][LoopIdiom] Recognize unordered atomic memcpy"
This reverts commit r304310.

It caused build failures in polly and mingw
due to undefined reference to
llvm::RTLIB::getMEMCPY_ELEMENT_ATOMIC.

llvm-svn: 304315
2017-05-31 17:20:51 +00:00
Anna Thomas 056c009f1b [Atomics][LoopIdiom] Recognize unordered atomic memcpy
Summary:
Expanding the loop idiom test for memcpy to also recognize unordered atomic memcpy.
The only difference for recognizing
an unordered atomic memcpy and instead of a normal memcpy is
that the loads and/or stores involved are unordered atomic operations.
Background:  http://lists.llvm.org/pipermail/llvm-dev/2017-May/112779.html

Patch by Daniel Neilson!

Reviewers: reames, anna, skatkov

Reviewed By: reames

Subscribers: llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D33243

llvm-svn: 304310
2017-05-31 16:39:52 +00:00
Davide Italiano 7bf95b964f [LIR] Use the newly `getRecurrenceVar()` helper. NFCI.
llvm-svn: 303704
2017-05-23 23:51:54 +00:00
Davide Italiano 4bc91190ea [LIR] Strengthen the check for recurrence variable in popcnt/CTLZ.
Fixes PR33114.
Differential Revision:  https://reviews.llvm.org/D33420

llvm-svn: 303700
2017-05-23 22:32:56 +00:00
Anna Thomas ae3f752f36 [NFC][loopIdiom] Clang format change rL303434
llvm-svn: 303439
2017-05-19 18:00:30 +00:00
Anna Thomas 5ecb8f7593 [LoopIdiom] Refactor return value of isLegalStore [NFC]
Summary:

This NFC simply refactors the return value of LoopIdiomRecognize::isLegalStore() from bool to an enumeration, and
removes the return-through-parameter mechanism that the function was using. This function is constructed such that it will
only ever recognize a single store idiom (memset, memset_pattern, or memcpy), and never a combination of these. As such it
makes much more sense for the return value to be the single idiom that the store matches, rather than
having a separate argument-return for each idiom -- it's cleaner, and makes it clearer that
only a single idiom can be matched.

Patch by Daniel Neilson!

Reviewers: anna, sanjoy, davide, haicheng

Reviewed By: anna, haicheng

Subscribers: haicheng, mzolotukhin, llvm-commits

Differential Revision: https://reviews.llvm.org/D33359

llvm-svn: 303434
2017-05-19 17:05:36 +00:00
Evgeny Stupachenko cc19560253 The patch exclude a case from zero check skip in
CTLZ idiom recognition (r303102).

Summary:

The following case:
i = 1;
if(n)
  while (n >>= 1)
    i++;
use(i);

Was converted to:

i = 1;
if(n)
  i += builtin_ctlz(n >> 1, false);
use(i);

Which is not correct. The patch make it:

i = 1;
if(n)
  i += builtin_ctlz(n >> 1, true);
use(i);

From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 303212
2017-05-16 21:44:59 +00:00
Evgeny Stupachenko 2fecd38ab8 The patch adds CTLZ idiom recognition.
Summary:

The following loops should be recognized:
i = 0;
while (n) {
  n = n >> 1;
  i++;
  body();
}
use(i);

And replaced with builtin_ctlz(n) if body() is empty or
for CPUs that have CTLZ instruction converted to countable:

for (j = 0; j < builtin_ctlz(n); j++) {
  n = n >> 1;
  i++;
  body();
}
use(builtin_ctlz(n));

Reviewers: rengolin, joerg

Differential Revision: http://reviews.llvm.org/D32605

From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 303102
2017-05-15 19:08:56 +00:00
Aditya Kumar 1c42d135e1 [LoopIdiom] check for safety while expanding
Loop Idiom recognition was generating memset in a case that
would result generating a division operation to an unsafe location.

Differential Revision: https://reviews.llvm.org/D32674

llvm-svn: 302238
2017-05-05 14:49:45 +00:00
Xin Tong a41bf70bea Empty Space. NFC
llvm-svn: 301878
2017-05-01 23:08:19 +00:00
Sanjoy Das e6bca0eecb Rename WeakVH to WeakTrackingVH; NFC
This relands r301424.

llvm-svn: 301812
2017-05-01 17:07:49 +00:00
Sanjoy Das 2cbeb00f38 Reverts commit r301424, r301425 and r301426
Commits were:

"Use WeakVH instead of WeakTrackingVH in AliasSetTracker's UnkownInsts"
"Add a new WeakVH value handle; NFC"
"Rename WeakVH to WeakTrackingVH; NFC"

The changes assumed pointers are 8 byte aligned on all architectures.

llvm-svn: 301429
2017-04-26 16:37:05 +00:00
Sanjoy Das 01de557738 Rename WeakVH to WeakTrackingVH; NFC
Summary:
I plan to use WeakVH to mean "nulls itself out on deletion, but does
not track RAUW" in a subsequent commit.

Reviewers: dblaikie, davide

Reviewed By: davide

Subscribers: arsenm, mehdi_amini, mcrosier, mzolotukhin, jfb, llvm-commits, nhaehnle

Differential Revision: https://reviews.llvm.org/D32266

llvm-svn: 301424
2017-04-26 16:20:52 +00:00
Sanjoy Das 206f65c049 [LIR] Obey non-integral pointer semantics
Summary: See http://llvm.org/docs/LangRef.html#non-integral-pointer-type

Reviewers: haicheng

Reviewed By: haicheng

Subscribers: mcrosier, mzolotukhin, llvm-commits

Differential Revision: https://reviews.llvm.org/D32196

llvm-svn: 301238
2017-04-24 20:12:10 +00:00
Evgeniy Stepanov 58ccc0949a Revert "Compute safety information in a much finer granularity."
Use-after-free in llvm::isGuaranteedToExecute.

llvm-svn: 301214
2017-04-24 18:25:07 +00:00
Xin Tong a266923d57 Compute safety information in a much finer granularity.
Summary:
Instead of keeping a variable indicating whether there are early exits
in the loop.  We keep all the early exits. This improves LICM's ability to
move instructions out of the loop based on is-guaranteed-to-execute.

I am going to update compilation time as well soon.

Reviewers: hfinkel, sanjoy, efriedma, mkuper

Reviewed By: hfinkel

Subscribers: llvm-commits, mzolotukhin

Differential Revision: https://reviews.llvm.org/D32433

llvm-svn: 301196
2017-04-24 17:12:22 +00:00
Serge Guelton 59a2d7b909 Module::getOrInsertFunction is using C-style vararg instead of variadic templates.
From a user prospective, it forces the use of an annoying nullptr to mark the end of the vararg, and there's not type checking on the arguments.
The variadic template is an obvious solution to both issues.

Differential Revision: https://reviews.llvm.org/D31070

llvm-svn: 299949
2017-04-11 15:01:18 +00:00
Diana Picus b050c7fbe0 Revert "Turn some C-style vararg into variadic templates"
This reverts commit r299925 because it broke the buildbots. See e.g.
http://lab.llvm.org:8011/builders/clang-cmake-armv7-a15/builds/6008

llvm-svn: 299928
2017-04-11 10:07:12 +00:00
Serge Guelton 5fd75fb72e Turn some C-style vararg into variadic templates
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.

From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.

llvm-svn: 299925
2017-04-11 08:36:52 +00:00
Mehdi Amini db11fdfda5 Revert "Turn some C-style vararg into variadic templates"
This reverts commit r299699, the examples needs to be updated.

llvm-svn: 299702
2017-04-06 20:23:57 +00:00
Mehdi Amini 579540a8f7 Turn some C-style vararg into variadic templates
Module::getOrInsertFunction is using C-style vararg instead of
variadic templates.

From a user prospective, it forces the use of an annoying nullptr
to mark the end of the vararg, and there's not type checking on the
arguments. The variadic template is an obvious solution to both
issues.

Patch by: Serge Guelton <serge.guelton@telecom-bretagne.eu>

Differential Revision: https://reviews.llvm.org/D31070

llvm-svn: 299699
2017-04-06 20:09:31 +00:00
David L. Jones d21529fa0d [Analysis] Add LibFunc_ prefix to enums in TargetLibraryInfo. (NFC)
Summary:
The LibFunc::Func enum holds enumerators named for libc functions.
Unfortunately, there are real situations, including libc implementations, where
function names are actually macros (musl uses "#define fopen64 fopen", for
example; any other transitively visible macro would have similar effects).

Strictly speaking, a conforming C++ Standard Library should provide any such
macros as functions instead (via <cstdio>). However, there are some "library"
functions which are not part of the standard, and thus not subject to this
rule (fopen64, for example). So, in order to be both portable and consistent,
the enum should not use the bare function names.

The old enum naming used a namespace LibFunc and an enum Func, with bare
enumerators. This patch changes LibFunc to be an enum with enumerators prefixed
with "LibFFunc_". (Unfortunately, a scoped enum is not sufficient to override
macros.)

There are additional changes required in clang.

Reviewers: rsmith

Subscribers: mehdi_amini, mzolotukhin, nemanjai, llvm-commits

Differential Revision: https://reviews.llvm.org/D28476

llvm-svn: 292848
2017-01-23 23:16:46 +00:00
Chandler Carruth 3bab7e1a79 [PM] Separate the LoopAnalysisManager from the LoopPassManager and move
the latter to the Transforms library.

While the loop PM uses an analysis to form the IR units, the current
plan is to have the PM itself establish and enforce both loop simplified
form and LCSSA. This would be a layering violation in the analysis
library.

Fundamentally, the idea behind the loop PM is to *transform* loops in
addition to running passes over them, so it really seemed like the most
natural place to sink this was into the transforms library.

We can't just move *everything* because we also have loop analyses that
rely on a subset of the invariants. So this patch splits the the loop
infrastructure into the analysis management that has to be part of the
analysis library, and the transform-aware pass manager.

This also required splitting the loop analyses' printer passes out to
the transforms library, which makes sense to me as running these will
transform the code into LCSSA in theory.

I haven't split the unittest though because testing one component
without the other seems nearly intractable.

Differential Revision: https://reviews.llvm.org/D28452

llvm-svn: 291662
2017-01-11 09:43:56 +00:00
Chandler Carruth 410eaeb064 [PM] Rewrite the loop pass manager to use a worklist and augmented run
arguments much like the CGSCC pass manager.

This is a major redesign following the pattern establish for the CGSCC layer to
support updates to the set of loops during the traversal of the loop nest and
to support invalidation of analyses.

An additional significant burden in the loop PM is that so many passes require
access to a large number of function analyses. Manually ensuring these are
cached, available, and preserved has been a long-standing burden in LLVM even
with the help of the automatic scheduling in the old pass manager. And it made
the new pass manager extremely unweildy. With this design, we can package the
common analyses up while in a function pass and make them immediately available
to all the loop passes. While in some cases this is unnecessary, I think the
simplicity afforded is worth it.

This does not (yet) address loop simplified form or LCSSA form, but those are
the next things on my radar and I have a clear plan for them.

While the patch is very large, most of it is either mechanically updating loop
passes to the new API or the new testing for the loop PM. The code for it is
reasonably compact.

I have not yet updated all of the loop passes to correctly leverage the update
mechanisms demonstrated in the unittests. I'll do that in follow-up patches
along with improved FileCheck tests for those passes that ensure things work in
more realistic scenarios. In many cases, there isn't much we can do with these
until the loop simplified form and LCSSA form are in place.

Differential Revision: https://reviews.llvm.org/D28292

llvm-svn: 291651
2017-01-11 06:23:21 +00:00
Xin Tong 8b8a600d92 Fix typo. NFC
llvm-svn: 291178
2017-01-05 21:40:08 +00:00
Davide Italiano c0169fa94f [LoopIdiomRecognize] Merge two if conditions into one. NFCI.
llvm-svn: 283579
2016-10-07 18:39:43 +00:00
Andrew Kaylor 7cdf01ef58 Target independent codesize heuristics for Loop Idiom Recognition
Patch by Sunita Marathe

Differential Revision: https://reviews.llvm.org/D21449

llvm-svn: 278378
2016-08-11 18:28:33 +00:00
Sean Silva 0746f3bfa4 Consistently use LoopAnalysisManager
One exception here is LoopInfo which must forward-declare it (because
the typedef is in LoopPassManager.h which depends on LoopInfo).

Also, some includes for LoopPassManager.h were needed since that file
provides the typedef.

Besides a general consistently benefit, the extra layer of indirection
allows the mechanical part of https://reviews.llvm.org/D23256 that
requires touching every transformation and analysis to be factored out
cleanly.

Thanks to David for the suggestion.

llvm-svn: 278079
2016-08-09 00:28:52 +00:00
Dehao Chen b9f8e29290 [PM] Port LoopIdiomRecognize Pass to new PM
Summary: Port LoopIdiomRecognize Pass to new PM

Reviewers: davidxl

Subscribers: davide, sanjoy, mzolotukhin, llvm-commits

Differential Revision: http://reviews.llvm.org/D22250

llvm-svn: 275202
2016-07-12 18:45:51 +00:00
Haicheng Wu a95cd1267f [LIR] Fix mis-compilation with unwinding.
To fix PR27859, bail out if there is an instruction may throw.

Differential Revision: http://reviews.llvm.org/D20638

llvm-svn: 274673
2016-07-06 21:05:40 +00:00
Benjamin Kramer 135f735af1 Apply clang-tidy's modernize-loop-convert to most of lib/Transforms.
Only minor manual fixes. No functionality change intended.

llvm-svn: 273808
2016-06-26 12:28:59 +00:00
David Majnemer 41ff4fdcd4 Forgot to update callers of deleteDeadInstruction
llvm-svn: 273163
2016-06-20 16:07:38 +00:00
David Majnemer c5601df9fd Reapply "[LoopIdiom] Don't remove dead operands manually"
This reverts commit r273160, reapplying r273132.
RecursivelyDeleteTriviallyDeadInstructions cannot be called on a
parentless Instruction.

llvm-svn: 273162
2016-06-20 16:03:25 +00:00
Cong Liu 1c28b6d733 Revert "[LoopIdiom] Don't remove dead operands manually"
This reverts commit r273132.
Breaks multiple test under /llvm/test:Transforms (e.g.
llvm/test:Transforms/LoopIdiom/basic.ll.test) under asan.

llvm-svn: 273160
2016-06-20 15:22:15 +00:00
David Majnemer a705843f23 [LoopIdiom] Don't remove dead operands manually
Removing dead instructions requires remembering which operands have
already been removed.  RecursivelyDeleteTriviallyDeadInstructions has
this logic, don't partially reimplement it in LoopIdiomRecognize.

This fixes PR28196.

llvm-svn: 273132
2016-06-20 02:33:29 +00:00
Peter Collingbourne 96efdd6107 IR: Introduce local_unnamed_addr attribute.
If a local_unnamed_addr attribute is attached to a global, the address
is known to be insignificant within the module. It is distinct from the
existing unnamed_addr attribute in that it only describes a local property
of the module rather than a global property of the symbol.

This attribute is intended to be used by the code generator and LTO to allow
the linker to decide whether the global needs to be in the symbol table. It is
possible to exclude a global from the symbol table if three things are true:
- This attribute is present on every instance of the global (which means that
  the normal rule that the global must have a unique address can be broken without
  being observable by the program by performing comparisons against the global's
  address)
- The global has linkonce_odr linkage (which means that each linkage unit must have
  its own copy of the global if it requires one, and the copy in each linkage unit
  must be the same)
- It is a constant or a function (which means that the program cannot observe that
  the unique-address rule has been broken by writing to the global)

Although this attribute could in principle be computed from the module
contents, LTO clients (i.e. linkers) will normally need to be able to compute
this property as part of symbol resolution, and it would be inefficient to
materialize every module just to compute it.

See:
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160509/356401.html
http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20160516/356738.html
for earlier discussion.

Part of the fix for PR27553.

Differential Revision: http://reviews.llvm.org/D20348

llvm-svn: 272709
2016-06-14 21:01:22 +00:00
Benjamin Kramer bdc4956bac Pass DebugLoc and SDLoc by const ref.
This used to be free, copying and moving DebugLocs became expensive
after the metadata rewrite. Passing by reference eliminates a ton of
track/untrack operations. No functionality change intended.

llvm-svn: 272512
2016-06-12 15:39:02 +00:00
Ahmed Bougacha ace97c1f7d [LIR] Set attributes on memset_pattern16.
"inferattrs" will deduce the attribute, but it will be too late for
many optimizations. Set it ourselves when creating the call.

Differential Revision: http://reviews.llvm.org/D17598

llvm-svn: 267762
2016-04-27 19:04:50 +00:00
Ahmed Bougacha 7f97193dd7 [LIR] Reuse variable. NFCI.
llvm-svn: 267761
2016-04-27 19:04:46 +00:00
Andrew Kaylor aa641a5171 Re-commit optimization bisect support (r267022) without new pass manager support.
The original commit was reverted because of a buildbot problem with LazyCallGraph::SCC handling (not related to the OptBisect handling).

Differential Revision: http://reviews.llvm.org/D19172

llvm-svn: 267231
2016-04-22 22:06:11 +00:00
Vedant Kumar 6013f45f92 Revert "Initial implementation of optimization bisect support."
This reverts commit r267022, due to an ASan failure:

  http://lab.llvm.org:8080/green/job/clang-stage2-cmake-RgSan_check/1549

llvm-svn: 267115
2016-04-22 06:51:37 +00:00
Andrew Kaylor f0f279291c Initial implementation of optimization bisect support.
This patch implements a optimization bisect feature, which will allow optimizations to be selectively disabled at compile time in order to track down test failures that are caused by incorrect optimizations.

The bisection is enabled using a new command line option (-opt-bisect-limit).  Individual passes that may be skipped call the OptBisect object (via an LLVMContext) to see if they should be skipped based on the bisect limit.  A finer level of control (disabling individual transformations) can be managed through an addition OptBisect method, but this is not yet used.

The skip checking in this implementation is based on (and replaces) the skipOptnoneFunction check.  Where that check was being called, a new call has been inserted in its place which checks the bisect limit and the optnone attribute.  A new function call has been added for module and SCC passes that behaves in a similar way.

Differential Revision: http://reviews.llvm.org/D19172

llvm-svn: 267022
2016-04-21 17:58:54 +00:00
Chandler Carruth 31088a9d58 [LPM] Factor all of the loop analysis usage updates into a common helper
routine.

We were getting this wrong in small ways and generally being very
inconsistent about it across loop passes. Instead, let's have a common
place where we do this. One minor downside is that this will require
some analyses like SCEV in more places than they are strictly needed.
However, this seems benign as these analyses are complete no-ops, and
without this consistency we can in many cases end up with the legacy
pass manager scheduling deciding to split up a loop pass pipeline in
order to run the function analysis half-way through. It is very, very
annoying to fix these without just being very pedantic across the board.

The only loop passes I've not updated here are ones that use
AU.setPreservesAll() such as IVUsers (an analysis) and the pass printer.
They seemed less relevant.

With this patch, almost all of the problems in PR24804 around loop pass
pipelines are fixed. The one remaining issue is that we run simplify-cfg
and instcombine in the middle of the loop pass pipeline. We've recently
added some loop variants of these passes that would seem substantially
cleaner to use, but this at least gets us much closer to the previous
state. Notably, the seven loop pass managers is down to three.

I've not updated the loop passes using LoopAccessAnalysis because that
analysis hasn't been fully wired into LoopSimplify/LCSSA, and it isn't
clear that those transforms want to support those forms anyways. They
all run late anyways, so this is harmless. Similarly, LSR is left alone
because it already carefully manages its forms and doesn't need to get
fused into a single loop pass manager with a bunch of other loop passes.

LoopReroll didn't use loop simplified form previously, and I've updated
the test case to match the trivially different output.

Finally, I've also factored all the pass initialization for the passes
that use this technique as well, so that should be done regularly and
reliably.

Thanks to James for the help reviewing and thinking about this stuff,
and Ben for help thinking about it as well!

Differential Revision: http://reviews.llvm.org/D17435

llvm-svn: 261316
2016-02-19 10:45:18 +00:00
Haicheng Wu 57e1a3e6ee [LIR] Avoid turning non-temporal stores into memset
This is to fix PR26645.

llvm-svn: 261149
2016-02-17 21:00:06 +00:00
Chad Rosier 81362a8599 [LIR] Allow merging of memsets in negatively strided loops.
Last part of PR25166.

llvm-svn: 260732
2016-02-12 21:03:23 +00:00
Chad Rosier 4acff96646 [LIR] Partially revert r252926(NFC), which introduced a very subtle change.
In short, before r252926 we were comparing an unsigned (StoreSize) against an a
APInt (Stride), which is fine and well.  After we were zero extending the Stride
and then converting to an unsigned, which is not the same thing.  Obviously,
Stides can also be negative.  This commit just restores the original behavior.

AFAICT, it's not possible to write a test case to expose the issue because
the code already has checks to make sure the StoreSize can't overflow an
unsigned (which prevents the Stride from overflowing an unsigned as well).

llvm-svn: 260706
2016-02-12 19:05:27 +00:00
Haicheng Wu f1c00a22be [LIR] Add support for structs and hand unrolled loops
This is a recommit of r258620 which causes PR26293.

The original message:

Now LIR can turn following codes into memset:

typedef struct foo {
  int a;
  int b;
} foo_t;

void bar(foo_t *f, unsigned n) {
  for (unsigned i = 0; i < n; ++i) {
    f[i].a = 0;
    f[i].b = 0;
  }
}

void test(foo_t *f, unsigned n) {
  for (unsigned i = 0; i < n; i += 2) {
    f[i] = 0;
    f[i+1] = 0;
  }
}

llvm-svn: 258777
2016-01-26 02:27:47 +00:00
Quentin Colombet a392810bea Speculatively revert r258620 as it is the likely culprid of PR26293.
llvm-svn: 258703
2016-01-25 19:12:49 +00:00
Haicheng Wu dd5e9d2159 [LIR] Add support for structs and hand unrolled loops
Now LIR can turn following codes into memset:

typedef struct foo {
  int a;
  int b;
} foo_t;

void bar(foo_t *f, unsigned n) {
  for (unsigned i = 0; i < n; ++i) {
    f[i].a = 0;
    f[i].b = 0;
  }
}

void test(foo_t *f, unsigned n) {
  for (unsigned i = 0; i < n; i += 2) {
    f[i] = 0;
    f[i+1] = 0;
  }
}

llvm-svn: 258620
2016-01-23 06:52:41 +00:00
Haicheng Wu 9d6c94006e [LIR] General refactoring to simplify code and the ease future code review
This is a resubmission of r256336 which was reverted in r256361. The issue was the lack of the invariant check of the memset value in processLooMemSet().

The original message:

Move several checks into isLegalStores. Also, delineate between those stores that are memset-able and those that are memcpy-able.

llvm-svn: 256783
2016-01-04 21:43:14 +00:00
Nico Weber 95cc9d5f14 Revert r256336, it caused PR25939
llvm-svn: 256361
2015-12-24 04:01:06 +00:00
Chad Rosier fba65d2fd3 [LIR] General refactoring to simplify code and the ease future code review.
Move several checks into isLegalStores. Also, delineate between those stores
that are memset-able and those that are memcpy-able.

http://reviews.llvm.org/D15683
Patch by Haicheng Wu <haicheng@codeaurora.org>!

llvm-svn: 256336
2015-12-23 17:29:33 +00:00
Chad Rosier 94274fb1ad [LIR] Refactor code to enable future patch. NFC.
llvm-svn: 256159
2015-12-21 14:49:32 +00:00
Sanjoy Das 0de2feceb1 [SCEV] Add and use SCEVConstant::getAPInt; NFCI
llvm-svn: 255921
2015-12-17 20:28:46 +00:00
Sanjay Patel af674fbfd9 getParent() ^ 3 == getModule() ; NFCI
llvm-svn: 255511
2015-12-14 17:24:23 +00:00
Chad Rosier 869962f962 [LIR] Push check into helper function. NFC.
llvm-svn: 254416
2015-12-01 14:26:35 +00:00
Chad Rosier a15b4b6af2 [LIR] Put includes in correct order. NFC.
llvm-svn: 253915
2015-11-23 21:09:13 +00:00
Chad Rosier 1cd3da15e8 [LIR] Update some comments. NFC.
llvm-svn: 253603
2015-11-19 21:33:07 +00:00
Chad Rosier 3ecc8d8d83 [LIR] Fix 80-column from previous commit.
llvm-svn: 253586
2015-11-19 18:25:11 +00:00
Chad Rosier fddc01f393 [LIR] Sink checks into function to enable future refactoring. NFC.
The purpose of this change is help delineate the memset and memcpy
optimizations with the overall goal of resolving PR25520.

llvm-svn: 253585
2015-11-19 18:22:21 +00:00
Chad Rosier 85c21f0a6e [LIR] Use the more appropriate method. NFC.
llvm-svn: 253578
2015-11-19 17:27:28 +00:00
Pete Cooper 67cf9a723b Revert "Change memcpy/memset/memmove to have dest and source alignments."
This reverts commit r253511.

This likely broke the bots in
http://lab.llvm.org:8011/builders/clang-ppc64-elf-linux2/builds/20202
http://bb.pgr.jp/builders/clang-3stage-i686-linux/builds/3787

llvm-svn: 253543
2015-11-19 05:56:52 +00:00
Pete Cooper 72bc23ef02 Change memcpy/memset/memmove to have dest and source alignments.
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html

These intrinsics currently have an explicit alignment argument which is
required to be a constant integer.  It represents the alignment of the
source and dest, and so must be the minimum of those.

This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments.  The alignment
argument itself is removed.

There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe.  For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.

For example, code which used to read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
  call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)

For out of tree owners, I was able to strip alignment from calls using sed by replacing:
  (call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
  $1i1 false)

and similarly for memmove and memcpy.

I then added back in alignment to test cases which needed it.

A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.

In IRBuilder itself, a new argument was added.  Instead of calling:
  CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
  CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)

There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool.  This is to prevent isVolatile here from passing its default
parameter to the source alignment.

Note, changes in future can now be made to codegen.  I didn't change anything here, but this
change should enable better memcpy code sequences.

Reviewed by Hal Finkel.

llvm-svn: 253511
2015-11-18 22:17:24 +00:00
Chad Rosier cc299b627d [LIR] Add support for creating memcpys from loops with a negative stride.
This allows us to transform the below loop into a memcpy.

void test(unsigned *__restrict__ a, unsigned *__restrict__ b) {
  for (int i = 2047; i >= 0; --i) {
    a[i] = b[i];
  }
}

This is the memcpy version of r251518, which added support for memset with
negative strided loops.

llvm-svn: 253091
2015-11-13 21:51:02 +00:00
Chad Rosier 2fa50a7a05 Add a comment that should have made my last commit.
llvm-svn: 253063
2015-11-13 19:13:40 +00:00
Chad Rosier ed0c7d1316 [LIR] Factor out the code to compute base ptr for negative strided loops.
This will allow for the code to be reused in the memcpy optimization.

llvm-svn: 253061
2015-11-13 19:11:07 +00:00
Chad Rosier a548fe569b [LIR] Minor refactoring. NFCI.
This change prevents uninteresting stores from being inserted into the list of
candidate stores for memset/memcpy conversion.

llvm-svn: 252926
2015-11-12 19:09:16 +00:00
Chad Rosier cc9030b60a [LIR] General refactor to improve compile-time and simplify code.
First create a list of candidates, then transform.  This simplifies the code in
that you have don't have to worry that you may be using an invalidated
iterator.

Previously, each time we created a memset/memcpy we would reevaluate the entire
loop potentially resulting in lots of redundant work for large basic blocks.

llvm-svn: 252817
2015-11-11 23:00:59 +00:00
Chad Rosier 19dc92dc8d Simplify. NFC.
llvm-svn: 252491
2015-11-09 16:56:06 +00:00
Chad Rosier 43f9b48975 [LIR] Simplify code by making DataLayout globally accessible. NFC.
llvm-svn: 252317
2015-11-06 16:33:57 +00:00
Chad Rosier 7142da0ed4 Typo.
llvm-svn: 251521
2015-10-28 15:08:33 +00:00
Chad Rosier 7967614b2b Reapply: [LIR] Add support for creating memsets from loops with a negative stride.
The simple fix is to prevent forming memcpy from loops with a negative stride.

llvm-svn: 251518
2015-10-28 14:38:49 +00:00
Chad Rosier 8eb2a18a9f Revert "[LIR] Add support for creating memsets from loops with a negative stride."
This reverts commit r251512.  This is causing LNT/chomp to fail.

llvm-svn: 251513
2015-10-28 13:54:09 +00:00
Chad Rosier d6a6bd5501 [LIR] Add support for creating memsets from loops with a negative stride.
http://reviews.llvm.org/D14125

llvm-svn: 251512
2015-10-28 12:55:34 +00:00
Chad Rosier 7f08d80595 Typo.
llvm-svn: 250224
2015-10-13 20:59:16 +00:00
Duncan P. N. Exon Smith be4d8cba1c Scalar: Remove remaining ilist iterator implicit conversions
Remove remaining `ilist_iterator` implicit conversions from
LLVMScalarOpts.

This change exposed some scary behaviour in
lib/Transforms/Scalar/SCCP.cpp around line 1770.  This patch changes a
call from `Function::begin()` to `&Function::front()`, since the return
was immediately being passed into another function that takes a
`Function*`.  `Function::front()` started to assert, since the function
was empty.  Note that `Function::end()` does not point at a legal
`Function*` -- it points at an `ilist_half_node` -- so the other
function was getting garbage before.  (I added the missing check for
`Function::isDeclaration()`.)

Otherwise, no functionality change intended.

llvm-svn: 250211
2015-10-13 19:26:58 +00:00
Sanjoy Das 2aacc0ecca [SCEV] Introduce ScalarEvolution::getOne and getZero.
Summary:
It is fairly common to call SE->getConstant(Ty, 0) or
SE->getConstant(Ty, 1); this change makes such uses a little bit
briefer.

I've refactored the call sites I could find easily to use getZero /
getOne.

Reviewers: hfinkel, majnemer, reames

Subscribers: sanjoy, llvm-commits

Differential Revision: http://reviews.llvm.org/D12947

llvm-svn: 248362
2015-09-23 01:59:04 +00:00
Chandler Carruth 7b560d40bd [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.

This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:

- FunctionAAResults is a type-erasing alias analysis results aggregation
  interface to walk a single query across a range of results from
  different alias analyses. Currently this is function-specific as we
  always assume that aliasing queries are *within* a function.

- AAResultBase is a CRTP utility providing stub implementations of
  various parts of the alias analysis result concept, notably in several
  cases in terms of other more general parts of the interface. This can
  be used to implement only a narrow part of the interface rather than
  the entire interface. This isn't really ideal, this logic should be
  hoisted into FunctionAAResults as currently it will cause
  a significant amount of redundant work, but it faithfully models the
  behavior of the prior infrastructure.

- All the alias analysis passes are ported to be wrapper passes for the
  legacy PM and new-style analysis passes for the new PM with a shared
  result object. In some cases (most notably CFL), this is an extremely
  naive approach that we should revisit when we can specialize for the
  new pass manager.

- BasicAA has been restructured to reflect that it is much more
  fundamentally a function analysis because it uses dominator trees and
  loop info that need to be constructed for each function.

All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.

The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.

This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.

Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.

One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.

Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.

Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.

Differential Revision: http://reviews.llvm.org/D12080

llvm-svn: 247167
2015-09-09 17:55:00 +00:00
Nick Lewycky 1098e496e1 More clean up, still NFC. Remove dead variables now that the casts are gone.
llvm-svn: 245420
2015-08-19 06:25:30 +00:00
Nick Lewycky 2c852543a3 Clean up this file a little. Remove dead casts, casting Values to Values. Adjust some comments for typos and whitespace. NFC.
llvm-svn: 245419
2015-08-19 06:22:33 +00:00
Nick Lewycky 06b0ea2e8f Fix three typos in comments; "easilly" -> "easily".
llvm-svn: 245379
2015-08-18 22:41:58 +00:00
Chandler Carruth 2f1fd1658f [PM] Port ScalarEvolution to the new pass manager.
This change makes ScalarEvolution a stand-alone object and just produces
one from a pass as needed. Making this work well requires making the
object movable, using references instead of overwritten pointers in
a number of places, and other refactorings.

I've also wired it up to the new pass manager and added a RUN line to
a test to exercise it under the new pass manager. This includes basic
printing support much like with other analyses.

But there is a big and somewhat scary change here. Prior to this patch
ScalarEvolution was never *actually* invalidated!!! Re-running the pass
just re-wired up the various other analyses and didn't remove any of the
existing entries in the SCEV caches or clear out anything at all. This
might seem OK as everything in SCEV that can uses ValueHandles to track
updates to the values that serve as SCEV keys. However, this still means
that as we ran SCEV over each function in the module, we kept
accumulating more and more SCEVs into the cache. At the end, we would
have a SCEV cache with every value that we ever needed a SCEV for in the
entire module!!! Yowzers. The releaseMemory routine would dump all of
this, but that isn't realy called during normal runs of the pipeline as
far as I can see.

To make matters worse, there *is* actually a key that we don't update
with value handles -- there is a map keyed off of Loop*s. Because
LoopInfo *does* release its memory from run to run, it is entirely
possible to run SCEV over one function, then over another function, and
then lookup a Loop* from the second function but find an entry inserted
for the first function! Ouch.

To make matters still worse, there are plenty of updates that *don't*
trip a value handle. It seems incredibly unlikely that today GVN or
another pass that invalidates SCEV can update values in *just* such
a way that a subsequent run of SCEV will incorrectly find lookups in
a cache, but it is theoretically possible and would be a nightmare to
debug.

With this refactoring, I've fixed all this by actually destroying and
recreating the ScalarEvolution object from run to run. Technically, this
could increase the amount of malloc traffic we see, but then again it is
also technically correct. ;] I don't actually think we're suffering from
tons of malloc traffic from SCEV because if we were, the fact that we
never clear the memory would seem more likely to have come up as an
actual problem before now. So, I've made the simple fix here. If in fact
there are serious issues with too much allocation and deallocation,
I can work on a clever fix that preserves the allocations (while
clearing the data) between each run, but I'd prefer to do that kind of
optimization with a test case / benchmark that shows why we need such
cleverness (and that can test that we actually make it faster). It's
possible that this will make some things faster by making the SCEV
caches have higher locality (due to being significantly smaller) so
until there is a clear benchmark, I think the simple change is best.

Differential Revision: http://reviews.llvm.org/D12063

llvm-svn: 245193
2015-08-17 02:08:17 +00:00
Chandler Carruth bf143e2a20 [LIR] Re-instate r244880, reverted in r244884, factoring the handling of
AliasAnalysis in LoopIdiomRecognize.

The previous commit to LIR, r244879, exposed some scary bug in the loop
pass pipeline with an assert failure that showed up on several bots.
This patch got reverted as part of getting that revision reverted, but
they're actually independent and unrelated. This patch has no functional
change and should be completely safe. It is also useful for my current
work on the AA infrastructure.

llvm-svn: 244993
2015-08-14 00:21:10 +00:00
Renato Golin 655348f0b2 Revert "[LIR] Start leveraging the fundamental guarantees of a loop..."
This reverts commit r244879, as it broke the test-suite on
SingleSource/Regression/C/2004-03-15-IndirectGoto in AArch64.

llvm-svn: 244885
2015-08-13 11:25:38 +00:00
Renato Golin 4d57906b0e Revert "[LIR] Handle access to AliasAnalysis the same way as the other analysis in LoopIdiomRecognize."
This reverts commit r244880, as it broke the test-suite on
SingleSource/Regression/C/2004-03-15-IndirectGoto in AArch64.

llvm-svn: 244884
2015-08-13 11:25:35 +00:00
Chandler Carruth c2af09823f [LIR] Handle access to AliasAnalysis the same way as the other analysis
in LoopIdiomRecognize. This is what started me staring at this code. Now
migrating it with the new AA stuff will be trivial.

llvm-svn: 244880
2015-08-13 10:00:53 +00:00
Chandler Carruth 8ae7b81559 [LIR] Start leveraging the fundamental guarantees of a loop in
simplified form to remove redundant checks and simplify the code for
popcount recognition. We don't actually need to handle all of these
cases.

I've left a FIXME for one in particular until I finish inspecting to
make sure we don't actually *rely* on the predicate in any way.

llvm-svn: 244879
2015-08-13 09:56:20 +00:00
Chandler Carruth 18c2669aca [LIR] Handle the LoopInfo the same as all the other analyses. No utility
really in breaking pattern just for this analysis.

llvm-svn: 244878
2015-08-13 09:27:01 +00:00
Chandler Carruth dc298329cc [LIR] Make the LoopIdiomRecognize pass get analyses essentially the same
way as every other pass. This simplifies the code quite a bit and is
also more idiomatic! <ba-dum!>

llvm-svn: 244853
2015-08-13 01:03:26 +00:00
Chandler Carruth 8219a501da [LIR] Remove the dedicated class for popcount recognition and sink the
code into methods on LoopIdiomRecognize.

This simplifies the code somewhat and also makes it much easier to move
the analyses around. Ultimately, the separate class wasn't providing
significant value over methods -- it contained the precondition basic
block and the current loop. The current loop is already available and
the precondition block wasn't needed everywhere and is easy to pass
around.

In several cases I just moved things to be static functions because they
already accepted most of their inputs as arguments.

This doesn't fix the way we manage analyses yet, that will be the next
patch, but it already makes the code over 50 lines shorter.

No functionality changed.

llvm-svn: 244851
2015-08-13 00:44:29 +00:00
Chandler Carruth d9c6070c98 [LIR] Move all the helpers to be private and re-order the methods in
a way that groups things logically. No functionality changed.

llvm-svn: 244845
2015-08-13 00:10:03 +00:00
Chandler Carruth be158b17db [LIR] Remove the 'LIRUtils' abstraction which was unnecessary and adding
complexity.

There is only one function that was called from multiple locations, and
that was 'getBranch' which has a reasonable one-line spelling already:
dyn_cast<BranchInst>(BB->getTerminator). We could make this shorter, but
it doesn't seem to add much value. Instead, we should avoid calling it
so many times on the same basic blocks, but that will be in a subsequent
patch.

The other functions are only called in one location, so inline them
there, and take advantage of this to use direct early exit and reduce
indentation. This makes it much more clear what is being tested for, and
in fact makes it clear now to me that there are simpler ways to do this
work. However, this patch just does the mechanical inlining. I'll clean
up the functionality of the code to leverage loop simplified form more
effectively in a follow-up.

Despite lots of early line breaks due to early-exit, this is still
shorter than it was before.

llvm-svn: 244841
2015-08-12 23:55:56 +00:00
Chandler Carruth bad690e8f7 [LIR] Run clang-format over LoopIdiomRecognize in preparation for
a significant code cleanup here.

The handling of analyses in this pass is overly complex and can be
simplified significantly, but the right way to do that is to simplify
all of the code not just the analyses, and that'll require pretty
extensive edits that would be noisy with formatting changes mixed into
them.

llvm-svn: 244828
2015-08-12 23:06:37 +00:00
Chandler Carruth 194f59ca5d [PM/AA] Extract the ModRef enums from the AliasAnalysis class in
preparation for de-coupling the AA implementations.

In order to do this, they had to become fake-scoped using the
traditional LLVM pattern of a leading initialism. These can't be actual
scoped enumerations because they're bitfields and thus inherently we use
them as integers.

I've also renamed the behavior enums that are specific to reasoning
about the mod/ref behavior of functions when called. This makes it more
clear that they have a very narrow domain of applicability.

I think there is a significantly cleaner API for all of this, but
I don't want to try to do really substantive changes for now, I just
want to refactor the things away from analysis groups so I'm preserving
the exact original design and just cleaning up the names, style, and
lifting out of the class.

Differential Revision: http://reviews.llvm.org/D10564

llvm-svn: 242963
2015-07-22 23:15:57 +00:00
Pete Cooper 90d95edbb4 Loop idiom recognizer was replacing too many uses of popcount.
When spotting that a loop can use ctpop, we were incorrectly replacing all uses of a value with a value derived from ctpop.

The bug here was exposed because we were replacing a use prior to the ctpop with the ctpop value and so we have a use before def, i.e., we changed

 %tobool.5 = icmp ne i32 %num, 0
 store i1 %tobool.5, i1* %ptr
 br i1 %tobool.5, label %for.body.lr.ph, label %for.end

to

 store i1 %1, i1* %ptr
 %0 = call i32 @llvm.ctpop.i32(i32 %num)
 %1 = icmp ne i32 %0, 0
 br i1 %1, label %for.body.lr.ph, label %for.end

Even if we inserted the ctpop so that it dominates the store here, that would still be incorrect.  The store doesn’t want the result of ctpop.

The fix is very simple, and involves replacing only the branch condition with the ctpop instead of all uses.

Reviewed by Hal Finkel.

llvm-svn: 242068
2015-07-13 21:25:33 +00:00
Alexander Kornienko f00654e31b Revert r240137 (Fixed/added namespace ending comments using clang-tidy. NFC)
Apparently, the style needs to be agreed upon first.

llvm-svn: 240390
2015-06-23 09:49:53 +00:00
Alexander Kornienko 70bc5f1398 Fixed/added namespace ending comments using clang-tidy. NFC
The patch is generated using this command:

tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
  -checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
  llvm/lib/


Thanks to Eugene Kosov for the original patch!

llvm-svn: 240137
2015-06-19 15:57:42 +00:00
Chandler Carruth ecbd16829a [PM/AA] Remove the UnknownSize static member from AliasAnalysis.
This is now living in MemoryLocation, which is what it pertains to. It
is also an enum there rather than a static data member which is left
never defined.

llvm-svn: 239886
2015-06-17 07:21:38 +00:00
Chandler Carruth ac80dc7532 [PM/AA] Remove the Location typedef from the AliasAnalysis class now
that it is its own entity in the form of MemoryLocation, and update all
the callers.

This is an entirely mechanical change. References to "Location" within
AA subclases become "MemoryLocation", and elsewhere
"AliasAnalysis::Location" becomes "MemoryLocation". Hope that helps
out-of-tree folks update.

llvm-svn: 239885
2015-06-17 07:18:54 +00:00
David Blaikie ff6409d096 Simplify IRBuilder::CreateCall* by using ArrayRef+initializer_list/braced init only
llvm-svn: 237624
2015-05-18 22:13:54 +00:00
Davide Italiano 95a77e8901 Don't rely on implicit pointerness of 'auto'.
This ends up being a copy. Pointy hat to me.
Reported by: dexonsmith, dblaikie

llvm-svn: 237394
2015-05-14 21:52:12 +00:00
Davide Italiano 80625afea8 [LoopIdiomRecognize] Use auto + range-based loop. NFC intended.
llvm-svn: 237284
2015-05-13 19:51:21 +00:00
Davide Italiano 8ed0446e97 [LoopIdiomRecognize] Transform backedge-taken count check into an assertion.
runOnCountable() allowed the caller to call on a loop without a
predictable backedge-taken count. Change the code so that only loops
with computable backdge-count can call this function, in order to catch
abuses.

llvm-svn: 237044
2015-05-11 21:02:34 +00:00
Benjamin Kramer 799003bf8c Re-sort includes with sort-includes.py and insert raw_ostream.h where it's used.
llvm-svn: 232998
2015-03-23 19:32:43 +00:00
Mehdi Amini a28d91d81b DataLayout is mandatory, update the API to reflect it with references.
Summary:
Now that the DataLayout is a mandatory part of the module, let's start
cleaning the codebase. This patch is a first attempt at doing that.

This patch is not exactly NFC as for instance some places were passing
a nullptr instead of the DataLayout, possibly just because there was a
default value on the DataLayout argument to many functions in the API.
Even though it is not purely NFC, there is no change in the
validation.

I turned as many pointer to DataLayout to references, this helped
figuring out all the places where a nullptr could come up.

I had initially a local version of this patch broken into over 30
independant, commits but some later commit were cleaning the API and
touching part of the code modified in the previous commits, so it
seemed cleaner without the intermediate state.

Test Plan:

Reviewers: echristo

Subscribers: llvm-commits

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231740
2015-03-10 02:37:25 +00:00
Mehdi Amini 46a43556db Make DataLayout Non-Optional in the Module
Summary:
DataLayout keeps the string used for its creation.

As a side effect it is no longer needed in the Module.
This is "almost" NFC, the string is no longer
canonicalized, you can't rely on two "equals" DataLayout
having the same string returned by getStringRepresentation().

Get rid of DataLayoutPass: the DataLayout is in the Module

The DataLayout is "per-module", let's enforce this by not
duplicating it more than necessary.
One more step toward non-optionality of the DataLayout in the
module.

Make DataLayout Non-Optional in the Module

Module->getDataLayout() will never returns nullptr anymore.

Reviewers: echristo

Subscribers: resistor, llvm-commits, jholewinski

Differential Revision: http://reviews.llvm.org/D7992

From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 231270
2015-03-04 18:43:29 +00:00
Benjamin Kramer 838752d3f6 LoopIdiom: Give globals for memset_pattern16 private linkage.
There's really no reason to have them have entries in the symbol table
anymore. Old versions of ld64 had some bugs in this area but those have
been fixed long ago.

llvm-svn: 231041
2015-03-03 00:17:09 +00:00
Benjamin Kramer f094d77de8 LoopIdiom: Use utility functions.
The only difference between deleteIfDeadInstruction and
RecursivelyDeleteTriviallyDeadInstructions is that the former also
manually invalidates SCEV. That's unnecessary because SCEV automatically
gets informed when an instruction is deleted via a ValueHandle. NFC.

llvm-svn: 228508
2015-02-07 21:37:08 +00:00
Chandler Carruth fdb9c573f7 [multiversion] Thread a function argument through all the callers of the
getTTI method used to get an actual TTI object.

No functionality changed. This just threads the argument and ensures
code like the inliner can correctly look up the callee's TTI rather than
using a fixed one.

The next change will use this to implement per-function subtarget usage
by TTI. The changes after that should eliminate the need for FTTI as that
will have become the default.

llvm-svn: 227730
2015-02-01 12:01:35 +00:00
Chandler Carruth 705b185f90 [PM] Change the core design of the TTI analysis to use a polymorphic
type erased interface and a single analysis pass rather than an
extremely complex analysis group.

The end result is that the TTI analysis can contain a type erased
implementation that supports the polymorphic TTI interface. We can build
one from a target-specific implementation or from a dummy one in the IR.

I've also factored all of the code into "mix-in"-able base classes,
including CRTP base classes to facilitate calling back up to the most
specialized form when delegating horizontally across the surface. These
aren't as clean as I would like and I'm planning to work on cleaning
some of this up, but I wanted to start by putting into the right form.

There are a number of reasons for this change, and this particular
design. The first and foremost reason is that an analysis group is
complete overkill, and the chaining delegation strategy was so opaque,
confusing, and high overhead that TTI was suffering greatly for it.
Several of the TTI functions had failed to be implemented in all places
because of the chaining-based delegation making there be no checking of
this. A few other functions were implemented with incorrect delegation.
The message to me was very clear working on this -- the delegation and
analysis group structure was too confusing to be useful here.

The other reason of course is that this is *much* more natural fit for
the new pass manager. This will lay the ground work for a type-erased
per-function info object that can look up the correct subtarget and even
cache it.

Yet another benefit is that this will significantly simplify the
interaction of the pass managers and the TargetMachine. See the future
work below.

The downside of this change is that it is very, very verbose. I'm going
to work to improve that, but it is somewhat an implementation necessity
in C++ to do type erasure. =/ I discussed this design really extensively
with Eric and Hal prior to going down this path, and afterward showed
them the result. No one was really thrilled with it, but there doesn't
seem to be a substantially better alternative. Using a base class and
virtual method dispatch would make the code much shorter, but as
discussed in the update to the programmer's manual and elsewhere,
a polymorphic interface feels like the more principled approach even if
this is perhaps the least compelling example of it. ;]

Ultimately, there is still a lot more to be done here, but this was the
huge chunk that I couldn't really split things out of because this was
the interface change to TTI. I've tried to minimize all the other parts
of this. The follow up work should include at least:

1) Improving the TargetMachine interface by having it directly return
   a TTI object. Because we have a non-pass object with value semantics
   and an internal type erasure mechanism, we can narrow the interface
   of the TargetMachine to *just* do what we need: build and return
   a TTI object that we can then insert into the pass pipeline.
2) Make the TTI object be fully specialized for a particular function.
   This will include splitting off a minimal form of it which is
   sufficient for the inliner and the old pass manager.
3) Add a new pass manager analysis which produces TTI objects from the
   target machine for each function. This may actually be done as part
   of #2 in order to use the new analysis to implement #2.
4) Work on narrowing the API between TTI and the targets so that it is
   easier to understand and less verbose to type erase.
5) Work on narrowing the API between TTI and its clients so that it is
   easier to understand and less verbose to forward.
6) Try to improve the CRTP-based delegation. I feel like this code is
   just a bit messy and exacerbating the complexity of implementing
   the TTI in each target.

Many thanks to Eric and Hal for their help here. I ended up blocked on
this somewhat more abruptly than I expected, and so I appreciate getting
it sorted out very quickly.

Differential Revision: http://reviews.llvm.org/D7293

llvm-svn: 227669
2015-01-31 03:43:40 +00:00
Chandler Carruth 4f8f307c77 [PM] Split the LoopInfo object apart from the legacy pass, creating
a LoopInfoWrapperPass to wire the object up to the legacy pass manager.

This switches all the clients of LoopInfo over and paves the way to port
LoopInfo to the new pass manager. No functionality change is intended
with this iteration.

llvm-svn: 226373
2015-01-17 14:16:18 +00:00
Chandler Carruth b98f63dbdb [PM] Separate the TargetLibraryInfo object from the immutable pass.
The pass is really just a means of accessing a cached instance of the
TargetLibraryInfo object, and this way we can re-use that object for the
new pass manager as its result.

Lots of delta, but nothing interesting happening here. This is the
common pattern that is developing to allow analyses to live in both the
old and new pass manager -- a wrapper pass in the old pass manager
emulates the separation intrinsic to the new pass manager between the
result and pass for analyses.

llvm-svn: 226157
2015-01-15 10:41:28 +00:00
Chandler Carruth 62d4215baa [PM] Move TargetLibraryInfo into the Analysis library.
While the term "Target" is in the name, it doesn't really have to do
with the LLVM Target library -- this isn't an abstraction which LLVM
targets generally need to implement or extend. It has much more to do
with modeling the various runtime libraries on different OSes and with
different runtime environments. The "target" in this sense is the more
general sense of a target of cross compilation.

This is in preparation for porting this analysis to the new pass
manager.

No functionality changed, and updates inbound for Clang and Polly.

llvm-svn: 226078
2015-01-15 02:16:27 +00:00
Nick Lewycky b06a796051 Remove extra whitespace in function declaration. No functionality change.
llvm-svn: 210965
2014-06-14 03:48:29 +00:00
Jim Grosbach 708f80f783 Tidy up.
llvm-svn: 207585
2014-04-29 22:41:58 +00:00
Jim Grosbach 4a7d496059 Spelling.
llvm-svn: 207584
2014-04-29 22:41:55 +00:00
Craig Topper f40110f4d8 [C++] Use 'nullptr'. Transforms edition.
llvm-svn: 207196
2014-04-25 05:29:35 +00:00
Chandler Carruth 964daaaf19 [Modules] Fix potential ODR violations by sinking the DEBUG_TYPE
definition below all of the header #include lines, lib/Transforms/...
edition.

This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.

Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.

llvm-svn: 206844
2014-04-22 02:55:47 +00:00
Nuno Lopes 31617266ea remove a bunch of unused private methods
found with a smarter version of -Wunused-member-function that I'm playwing with.
Appologies in advance if I removed someone's WIP code.

 include/llvm/CodeGen/MachineSSAUpdater.h            |    1 
 include/llvm/IR/DebugInfo.h                         |    3 
 lib/CodeGen/MachineSSAUpdater.cpp                   |   10 --
 lib/CodeGen/PostRASchedulerList.cpp                 |    1 
 lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp    |   10 --
 lib/IR/DebugInfo.cpp                                |   12 --
 lib/MC/MCAsmStreamer.cpp                            |    2 
 lib/Support/YAMLParser.cpp                          |   39 ---------
 lib/TableGen/TGParser.cpp                           |   16 ---
 lib/TableGen/TGParser.h                             |    1 
 lib/Target/AArch64/AArch64TargetTransformInfo.cpp   |    9 --
 lib/Target/ARM/ARMCodeEmitter.cpp                   |   12 --
 lib/Target/ARM/ARMFastISel.cpp                      |   84 --------------------
 lib/Target/Mips/MipsCodeEmitter.cpp                 |   11 --
 lib/Target/Mips/MipsConstantIslandPass.cpp          |   12 --
 lib/Target/NVPTX/NVPTXISelDAGToDAG.cpp              |   21 -----
 lib/Target/NVPTX/NVPTXISelDAGToDAG.h                |    2 
 lib/Target/PowerPC/PPCFastISel.cpp                  |    1 
 lib/Transforms/Instrumentation/AddressSanitizer.cpp |    2 
 lib/Transforms/Instrumentation/BoundsChecking.cpp   |    2 
 lib/Transforms/Instrumentation/MemorySanitizer.cpp  |    1 
 lib/Transforms/Scalar/LoopIdiomRecognize.cpp        |    8 -
 lib/Transforms/Scalar/SCCP.cpp                      |    1 
 utils/TableGen/CodeEmitterGen.cpp                   |    2 
 24 files changed, 2 insertions(+), 261 deletions(-)

llvm-svn: 204560
2014-03-23 17:09:26 +00:00
Chandler Carruth cdf4788401 [C++11] Add range based accessors for the Use-Def chain of a Value.
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
   detail
2) Change it to actually be a *Use* iterator rather than a *User*
   iterator.
3) Add an adaptor which is a User iterator that always looks through the
   Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
   they wanted a use_iterator (and to explicitly dig out the User when
   needed), or a user_iterator which makes the Use itself totally
   opaque.

Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.

The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.

However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]

llvm-svn: 203364
2014-03-09 03:16:01 +00:00
Craig Topper 3e4c697ca1 [C++11] Add 'override' keyword to virtual methods that override their base class.
llvm-svn: 202953
2014-03-05 09:10:37 +00:00
Rafael Espindola 935125126c Make DataLayout a plain object, not a pass.
Instead, have a DataLayoutPass that holds one. This will allow parts of LLVM
don't don't handle passes to also use DataLayout.

llvm-svn: 202168
2014-02-25 17:30:31 +00:00
Rafael Espindola 37dc9e19f5 Rename many DataLayout variables from TD to DL.
I am really sorry for the noise, but the current state where some parts of the
code use TD (from the old name: TargetData) and other parts use DL makes it
hard to write a patch that changes where those variables come from and how
they are passed along.

llvm-svn: 201827
2014-02-21 00:06:31 +00:00
Paul Robinson af4e64d095 Disable most IR-level transform passes on functions marked 'optnone'.
Ideally only those transform passes that run at -O0 remain enabled,
in reality we get as close as we reasonably can.
Passes are responsible for disabling themselves, it's not the job of
the pass manager to do it for them.

llvm-svn: 200892
2014-02-06 00:07:05 +00:00
Alp Toker cb40291100 Fix known typos
Sweep the codebase for common typos. Includes some changes to visible function
names that were misspelt.

llvm-svn: 200018
2014-01-24 17:20:08 +00:00
Chandler Carruth 73523021d0 [PM] Split DominatorTree into a concrete analysis result object which
can be used by both the new pass manager and the old.

This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.

The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.

Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.

llvm-svn: 199104
2014-01-13 13:07:17 +00:00
Chandler Carruth 5ad5f15cff [cleanup] Move the Dominators.h and Verifier.h headers into the IR
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.

Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.

But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.

llvm-svn: 199082
2014-01-13 09:26:24 +00:00
Jakub Staszak 3ab283c157 Don't #include heavy Dominators.h file in LoopInfo.h. This change reduces
overall time of LLVM compilation by ~1%.

llvm-svn: 196667
2013-12-07 21:20:17 +00:00
Robert Wilhelm 2788d3ec99 Even more spelling fixes for "instruction".
llvm-svn: 191611
2013-09-28 13:42:22 +00:00
Matt Arsenault 009faed1be Teach loop-idiom about address space pointer sizes
llvm-svn: 190491
2013-09-11 05:09:42 +00:00
Matt Arsenault 5df49bd703 Add braces
llvm-svn: 190490
2013-09-11 05:09:35 +00:00
Matt Arsenault fb18323885 Fix spelling and grammar
llvm-svn: 186858
2013-07-22 18:59:58 +00:00
Shuxin Yang c5c730b0e0 PR14904: Segmentation fault running pass 'Recognize loop idioms'
The root cause is mistakenly taking for granted that 
    "dyn_cast<Instruction>(a-Value)"
return a non-NULL instruction.

llvm-svn: 172145
2013-01-10 23:32:01 +00:00