Summary:
Follow up change to rL339703, where we now vectorize loops with non-phi
instructions used outside the loop. Note that the cyclic dependency
identification occurs when identifying reduction/induction vars.
We also need to identify that we do not allow users where the PSCEV information
within and outside the loop are different. This was the fix added in rL307837
for PR33706.
Reviewers: Ayal, mkuper, fhahn
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D50778
llvm-svn: 340278
Summary:
This patch teaches the loop vectorizer to vectorize loops with non
header phis that have have outside uses. This is because the iteration
dependence distance for these phis can be widened upto VF (similar to
how we do for induction/reduction) if they do not have a cyclic
dependence with header phis. When identifying reduction/induction/first
order recurrence header phis, we already identify if there are any cyclic
dependencies that prevents vectorization.
The vectorizer is taught to extract the last element from the vectorized
phi and update the scalar loop exit block phi to contain this extracted
element from the vector loop.
This patch can be extended to vectorize loops where instructions other
than phis have outside uses.
Reviewers: Ayal, mkuper, mssimpso, efriedma
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50579
llvm-svn: 339703
r272715 broke libcxx because it did not correctly handle cases where the
last iteration of one IV is the second-to-last iteration of another.
Original commit message:
Vectorizing loops with "escaping" IVs has been disabled since r190790, due to
PR17179. This re-enables it, with support for external use of both
"post-increment" (last iteration) and "pre-increment" (second-to-last iteration)
IVs.
llvm-svn: 272742
Vectorizing loops with "escaping" IVs has been disabled since r190790, due to
PR17179. This re-enables it, with support for external use of both
"post-increment" (last iteration) and "pre-increment" (second-to-last iteration)
IVs.
Differential Revision: http://reviews.llvm.org/D21048
llvm-svn: 272715
This patch and a relatec clang patch solve the problem of having to explicitly enable analysis when specifying a loop hint pragma to get the diagnostics. Passing AlwasyPrint as the pass name (see below) causes the front-end to print the diagnostic if the user has specified '-Rpass-analysis' without an '=<target-pass>’. Users of loop hints can pass that compiler option without having to specify the pass and they will get diagnostics for only those loops with loop hints.
llvm-svn: 244555
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
"Unroll" is not the appropriate name for this variable. Clang already uses
the term "interleave" in pragmas and metadata for this.
Differential Revision: http://reviews.llvm.org/D5066
llvm-svn: 217528
We would have to compute the pre increment value, either by computing it on
every loop iteration or by splitting the edge out of the loop and inserting a
computation for it there.
For now, just give up vectorizing such loops.
Fixes PR17179.
llvm-svn: 190790
We check that instructions in the loop don't have outside users (except if
they are reduction values). Unfortunately, we skipped this check for
if-convertable PHIs.
Fixes PR16184.
llvm-svn: 183035