Summary:
An implementation of ubsan runtime library suitable for use in production.
Minimal attack surface.
* No stack traces.
* Definitely no C++ demangling.
* No UBSAN_OPTIONS=log_file=/path (very suid-unfriendly). And no UBSAN_OPTIONS in general.
* as simple as possible
Minimal CPU and RAM overhead.
* Source locations unnecessary in the presence of (split) debug info.
* Values and types (as in A+B overflows T) can be reconstructed from register/stack dumps, once you know what type of error you are looking at.
* above two items save 3% binary size.
When UBSan is used with -ftrap-function=abort, sometimes it is hard to reason about failures. This library replaces abort with a slightly more informative message without much extra overhead. Since ubsan interface in not stable, this code must reside in compiler-rt.
Reviewers: pcc, kcc
Subscribers: srhines, mgorny, aprantl, krytarowski, llvm-commits
Differential Revision: https://reviews.llvm.org/D36810
llvm-svn: 312029
Summary:
Augment SanitizerCoverage to insert maximum stack depth tracing for
use by libFuzzer. The new instrumentation is enabled by the flag
-fsanitize-coverage=stack-depth and is compatible with the existing
trace-pc-guard coverage. The user must also declare the following
global variable in their code:
thread_local uintptr_t __sancov_lowest_stack
https://bugs.llvm.org/show_bug.cgi?id=33857
Reviewers: vitalybuka, kcc
Reviewed By: vitalybuka
Subscribers: kubamracek, hiraditya, cfe-commits, llvm-commits
Differential Revision: https://reviews.llvm.org/D36839
llvm-svn: 311186
The flag will perform instrumentation necessary to the fuzzing,
but will NOT link libLLVMFuzzer.a library.
Necessary when modifying CFLAGS for projects which may produce
executables as well as a fuzzable target.
Differential Revision: https://reviews.llvm.org/D36600
llvm-svn: 310733
Summary:
This is to provide a default blacklist filename for UBSan.
While UBSan is turned on, it's better that clang pick up a blacklist file (when exists), just as what ASan / MSan does, so we do not end up adding the "-fsanitize-blacklist" option to every command line.
Reviewers: chandlerc, echristo, vsk, eugenis
Reviewed By: vsk, eugenis
Subscribers: vsk, eugenis, echristo, cfe-commits
Differential Revision: https://reviews.llvm.org/D35849
llvm-svn: 309873
In r309007, I made -fsanitize=null a hard prerequisite for -fsanitize=vptr. I
did not see the need for the two checks to have separate null checking logic
for the same pointer. I expected the two checks to either always be enabled
together, or to be mutually compatible.
In the mailing list discussion re: r309007 it became clear that that isn't the
case. If a codebase is -fsanitize=vptr clean but not -fsanitize=null clean,
it's useful to have -fsanitize=vptr emit its own null check. That's what this
patch does: with it, -fsanitize=vptr can be used without -fsanitize=null.
Differential Revision: https://reviews.llvm.org/D36112
llvm-svn: 309846
The instrumentation generated by -fsanitize=vptr does not null check a
user pointer before loading from it. This causes crashes in the face of
UB member calls (this=nullptr), i.e it's causing user programs to crash
only after UBSan is turned on.
The fix is to make run-time null checking a prerequisite for enabling
-fsanitize=vptr, and to then teach UBSan to reuse these run-time null
checks to make -fsanitize=vptr safe.
Testing: check-clang, check-ubsan, a stage2 ubsan-enabled build
Differential Revision: https://reviews.llvm.org/D35735https://bugs.llvm.org/show_bug.cgi?id=33881
llvm-svn: 309007
The driver ignores -fsanitize-coverage=... flags when also given
-fsanitize=... flags for sanitizer flavors that don't support the
coverage runtime. This logic failed to account for subsequent
-fno-sanitize=... flags that disable the sanitizer flavors that
conflict with -fsanitize-coverage=... flags.
Patch by Roland McGrath
Differential Revision: https://reviews.llvm.org/D35603
llvm-svn: 308707
This check currently isn't able to diagnose any issues at -O0, not is it
likely to [1]. Disabling the check at -O0 leads to substantial compile
time and binary size savings.
[1] [cfe-dev] Disabling ubsan's object size check at -O0
Differential Revision: https://reviews.llvm.org/D34563
llvm-svn: 306181
This feature is subtly broken when the linker is gold 2.26 or
earlier. See the following bug for details:
https://sourceware.org/bugzilla/show_bug.cgi?id=19002
Since the decision needs to be made at compilation time, we can not
test the linker version. The flag is off by default on ELF targets,
and on otherwise.
llvm-svn: 302591
When enabling any sanitizer, -fsanitize-use-after-scope is enabled by
default. This doesn't actually turn ASan on, because we've been getting
lucky and there are extra checks in BackendUtil that stop this from
happening.
However, this has been causing a behavior change: extra lifetime markers
are emitted in some cases where they aren't needed or expected.
llvm-svn: 302468
Previously, adding libfuzzer to a project was a multi-step procedure,
involving libfuzzer compilation, linking the library, and specifying
coverage flags.
With this change,libfuzzer can be enabled by adding a single
-fsanitize=fuzzer flag instead.
llvm-svn: 301212
Teach UBSan to detect when a value with the _Nonnull type annotation
assumes a null value. Call expressions, initializers, assignments, and
return statements are all checked.
Because _Nonnull does not affect IRGen, the new checks are disabled by
default. The new driver flags are:
-fsanitize=nullability-arg (_Nonnull violation in call)
-fsanitize=nullability-assign (_Nonnull violation in assignment)
-fsanitize=nullability-return (_Nonnull violation in return stmt)
-fsanitize=nullability (all of the above)
This patch builds on top of UBSan's existing support for detecting
violations of the nonnull attributes ('nonnull' and 'returns_nonnull'),
and relies on the compiler-rt support for those checks. Eventually we
will need to update the diagnostic messages in compiler-rt (there are
FIXME's for this, which will be addressed in a follow-up).
One point of note is that the nullability-return check is only allowed
to kick in if all arguments to the function satisfy their nullability
preconditions. This makes it necessary to emit some null checks in the
function body itself.
Testing: check-clang and check-ubsan. I also built some Apple ObjC
frameworks with an asserts-enabled compiler, and verified that we get
valid reports.
Differential Revision: https://reviews.llvm.org/D30762
llvm-svn: 297700
Summary:
(This is a move-only refactoring patch. There are no functionality changes.)
This patch splits apart the Clang driver's tool and toolchain implementation
files. Each target platform toolchain is moved to its own file, along with the
closest-related tools. Each target platform toolchain has separate headers and
implementation files, so the hierarchy of classes is unchanged.
There are some remaining shared free functions, mostly from Tools.cpp. Several
of these move to their own architecture-specific files, similar to r296056. Some
of them are only used by a single target platform; since the tools and
toolchains are now together, some helpers now live in a platform-specific file.
The balance are helpers related to manipulating argument lists, so they are now
in a new file pair, CommonArgs.h and .cpp.
I've tried to cluster the code logically, which is fairly straightforward for
most of the target platforms and shared architectures. I think I've made
reasonable choices for these, as well as the various shared helpers; but of
course, I'm happy to hear feedback in the review.
There are some particular things I don't like about this patch, but haven't been
able to find a better overall solution. The first is the proliferation of files:
there are several files that are tiny because the toolchain is not very
different from its base (usually the Gnu tools/toolchain). I think this is
mostly a reflection of the true complexity, though, so it may not be "fixable"
in any reasonable sense. The second thing I don't like are the includes like
"../Something.h". I've avoided this largely by clustering into the current file
structure. However, a few of these includes remain, and in those cases it
doesn't make sense to me to sink an existing file any deeper.
Reviewers: rsmith, mehdi_amini, compnerd, rnk, javed.absar
Subscribers: emaste, jfb, danalbert, srhines, dschuff, jyknight, nemanjai, nhaehnle, mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D30372
llvm-svn: 297250
Summary:
Sanitizers aren't supported on NVPTX -- don't try to run them.
This lets you e.g. pass -fsanitize=address and get asan on your host
code.
Reviewers: kcc
Subscribers: cfe-commits, tra, jhen
Differential Revision: https://reviews.llvm.org/D24640
llvm-svn: 281680
This reverts commit r275895 in order to address some post-commit review
feedback from Eric Christopher (see: the list thread for r275895).
llvm-svn: 276936
Compute an effective target triple exactly once in ConstructJob(), and
then simply pass around references to it. This eliminates wasteful
re-computation of effective triples (e.g in getARMFloatABI()).
Differential Revision: https://reviews.llvm.org/D22290
llvm-svn: 275895
The reason is that this (a) seems to work just fine and (b) useful when building stuff with
sanitizer+coverage, but need to exclude the sanitizer for a particular source file.
llvm-svn: 272717
It makes compiler-rt tests fail if the gold plugin is enabled.
Revert "Rework interface for bitset-using features to use a notion of LTO visibility."
Revert "Driver: only produce CFI -fvisibility= error when compiling."
Revert "clang/test/CodeGenCXX/cfi-blacklist.cpp: Exclude ms targets. They would be non-cfi."
llvm-svn: 267871
The -fvisibility= flag only affects compile jobs, so there's no need to
error out because of it if we aren't compiling (e.g. if we are only linking).
llvm-svn: 267824
Bitsets, and the compiler features they rely on (vtable opt, CFI),
only have visibility within the LTO'd part of the linkage unit. Therefore,
only enable these features for classes with hidden LTO visibility. This
notion is based on object file visibility or (on Windows)
dllimport/dllexport attributes.
We provide the [[clang::lto_visibility_public]] attribute to override the
compiler's LTO visibility inference in cases where the class is defined
in the non-LTO'd part of the linkage unit, or where the ABI supports
calling classes derived from abstract base classes with hidden visibility
in other linkage units (e.g. COM on Windows).
If the cross-DSO CFI mode is enabled, bitset checks are emitted even for
classes with public LTO visibility, as that mode uses a separate mechanism
to cause bitsets to be exported.
This mechanism replaces the whole-program-vtables blacklist, so remove the
-fwhole-program-vtables-blacklist flag.
Because __declspec(uuid()) now implies [[clang::lto_visibility_public]], the
support for the special attr:uuid blacklist entry is removed.
Differential Revision: http://reviews.llvm.org/D18635
llvm-svn: 267784
Summary:
Adds a framework to enable the instrumentation pass for the new
EfficiencySanitizer ("esan") family of tools. Adds a flag for esan's
cache fragmentation tool via -fsanitize=efficiency-cache-frag.
Adds appropriate tests for the new flag.
Reviewers: eugenis, vitalybuka, aizatsky, filcab
Subscribers: filcab, kubabrecka, llvm-commits, zhaoqin, kcc
Differential Revision: http://reviews.llvm.org/D19169
llvm-svn: 267059
Over the last month we've been testing SafeStack extensively. As far as
we know, it works perfectly fine. That why I'd like to see us having
this enabled by default for CloudABI.
This change introduces a getDefaultSanitizers() function that toolchains
can use to specify which sanitizers are enabled by default. Once all
flags are processed, only flags that had no -fno-sanitize overrides are
enabled.
Extend the thests for CloudABI to test both the default case and the
case in which we want to explicitly disable SafeStack.
Reviewed by: eugenis, pcc
Differential Revision: http://reviews.llvm.org/D18505
llvm-svn: 264787
This is part of a new statistics gathering feature for the sanitizers.
See clang/docs/SanitizerStats.rst for further info and docs.
Differential Revision: http://reviews.llvm.org/D16175
llvm-svn: 257971
Clang-side cross-DSO CFI.
* Adds a command line flag -f[no-]sanitize-cfi-cross-dso.
* Links a runtime library when enabled.
* Emits __cfi_slowpath calls is bitset test fails.
* Emits extra hash-based bitsets for external CFI checks.
* Sets a module flag to enable __cfi_check generation during LTO.
This mode does not yet support diagnostics.
llvm-svn: 255694
Since r249754 MemorySanitizer should work equally well for PIE and
non-PIE executables on Linux/x86_64.
Beware, with this change -fsanitize=memory no longer adds implicit
-fPIE -pie compiler/linker flags on Linux/x86_64.
This is a re-land of r250941, limited to Linux/x86_64 + a very minor
refactoring in SanitizerArgs.
llvm-svn: 250949
Since r249754 MemorySanitizer should work equally well for PIE and
non-PIE executables.
Beware, with this change -fsanitize=memory no longer adds implicit
-fPIE -pie compiler/linker flags, unless the target defaults to PIE.
llvm-svn: 250941
This recommits r250398 with fixes to the tests for bot failures.
Add "-target x86_64-unknown-linux" to the clang invocations that
check for the gold plugin.
llvm-svn: 250455
Rolling this back for now since there are a couple of bot failures on
the new tests I added, and I won't have a chance to look at them in detail
until later this afternoon. I think the new tests need some restrictions on
having the gold plugin available.
This reverts commit r250398.
llvm-svn: 250402
Summary:
Add clang support for -flto=thin option, which is used to set the
EmitFunctionSummary code gen option on compiles.
Add -flto=full as an alias to the existing -flto.
Add tests to check for proper overriding of -flto variants on the
command line, and convert grep tests to FileCheck.
Reviewers: dexonsmith, joker.eph
Subscribers: davidxl, cfe-commits
Differential Revision: http://reviews.llvm.org/D11908
llvm-svn: 250398
Summary:
This patch moves getCompilerRT() from the clang::driver::tools namespace to
the ToolChain class. This is needed for multilib toolchains that need to
place their libraries in Clang's resource directory with a layout that is
different from the default one.
Reviewers: atanasyan, rsmith
Subscribers: tberghammer, danalbert, srhines, cfe-commits
Differential Revision: http://reviews.llvm.org/D13339
llvm-svn: 249030
ARM EABI adds target attributes to the object file. Amongst the attributes that
are emitted is the VFP argument passing (Hard vs Soft). The linker is
responsible for checking these attributes and erroring on mismatches. This
causes problems for the compiler-rt builtins when targeting both hard and
soft. Because both of these options name the builtins compiler-rt component
the same (libclang_rt.builtins-arm.a or libclang_rt.builtins-arm-android). GCC
is able to get away with this as it does one target per toolchain. This
changes the naming convention for the ARM compiler-rt builtins to differentiate
between HF and Soft. Although this means that compiler-rt may be duplicated, it
enables supporting both variants from a single toolchain. A similar approach is
taken by the Darwin toolchain, naming the library to differentiate between the
calling conventions.
llvm-svn: 248649
Summary:
Do not include default sanitizer blacklists into -M/-MM/-MD/-MMD output.
Introduce a frontend option -fdepfile-entry, and only insert them
for the user-defined sanitizer blacklists. In frontend, grab ExtraDeps
from -fdepfile-entry, instead of -fsanitize-blacklist.
Reviewers: rsmith, pcc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D12544
llvm-svn: 246700
We now use the sanitizer special case list to decide which types to blacklist.
We also support a special blacklist entry for types with a uuid attribute,
which are generally COM types whose virtual tables are defined externally.
Differential Revision: http://reviews.llvm.org/D11096
llvm-svn: 242286
There are known issues, but the current implementation is good enough for
the check-cfi test suite.
Differential Revision: http://reviews.llvm.org/D11030
llvm-svn: 241728
On Windows the user may invoke the linker directly, so we might not have an
opportunity to add runtime library flags to the linker command line. Instead,
instruct the code generator to embed linker directive in the object file
that cause the required runtime libraries to be linked.
We might also want to do something similar for ASan, but it seems to have
its own special complexities which may make this infeasible.
Differential Revision: http://reviews.llvm.org/D10862
llvm-svn: 241225
Summary:
Namely, we must have proper C++ABI support in UBSan runtime. We don't
have a good way to check for that, so just assume that C++ABI support is
there whenever -fsanitize=vptr is supported (i.e. only on handful of
platforms).
Exact diagnostic is also tricky. It's not "cfi" that is unsupported,
just the diagnostic mode. So, I suggest to report that
"-fno-sanitize-trap=cfi-foobar" is incompatible with a given target
toolchain.
Test Plan: regression test suite
Reviewers: pcc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D10751
llvm-svn: 240716
Introduce ToolChain::getSupportedSanitizers() that would return the set
of sanitizers available on given toolchain. By default, these are
sanitizers which don't necessarily require runtime support and are
not toolchain- or architecture-dependent.
Sanitizers (ASan, DFSan, TSan, MSan etc.) which cannot function
without runtime library are marked as supported only on platforms
for which we actually build these runtimes.
This would allow more fine-grained checks in the future: for instance,
we have to restrict availability of -fsanitize=vptr to Mac OS 10.9+
(PR23539).
Update test cases accrodingly: add tests for certain unsupported
configurations, remove test cases for -fsanitize=vptr + PS4
integration, as we don't build the runtime for PS4 at the moment.
This change was first submitted as r239953 and reverted in r239958.
The problem was and still is in Darwin toolchains, which get the
knowledge about target platform too late after initializaition, while
now we require this information when ToolChain::getSanitizerArgs() is
called. r240170 works around this issue.
llvm-svn: 240179
Summary:
This is unfortunate, but would let us land http://reviews.llvm.org/D10467,
that makes ToolChains responsible for computing the set of sanitizers
they support.
Unfortunately, Darwin ToolChains doesn't know about actual OS they
target until ToolChain::TranslateArgs() is called. In particular, it
means we won't be able to construct SanitizerArgs for these ToolChains
before that.
This change removes SanitizerArgs::needsLTO() method, so that now
ToolChain::IsUsingLTO(), which is called very early, doesn't need
SanitizerArgs to implement this method.
Docs and test cases are updated accordingly. See
https://llvm.org/bugs/show_bug.cgi?id=23539, which describes why we
start all these.
Test Plan: regression test suite
Reviewers: pcc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D10560
llvm-svn: 240170
This patch adds initial support for the -fsanitize=kernel-address flag to Clang.
Right now it's quite restricted: only out-of-line instrumentation is supported, globals are not instrumented, some GCC kasan flags are not supported.
Using this patch I am able to build and boot the KASan tree with LLVMLinux patches from github.com/ramosian-glider/kasan/tree/kasan_llvmlinux.
To disable KASan instrumentation for a certain function attribute((no_sanitize("kernel-address"))) can be used.
llvm-svn: 240131
This causes programs compiled with this flag to print a diagnostic when
a control flow integrity check fails instead of aborting. Diagnostics are
printed using UBSan's runtime library.
The main motivation of this feature over -fsanitize=vptr is fidelity with
the -fsanitize=cfi implementation: the diagnostics are printed under exactly
the same conditions as those which would cause -fsanitize=cfi to abort the
program. This means that the same restrictions apply regarding compiling
all translation units with -fsanitize=cfi, cross-DSO virtual calls are
forbidden, etc.
Differential Revision: http://reviews.llvm.org/D10268
llvm-svn: 240109
This flag controls whether a given sanitizer traps upon detecting
an error. It currently only supports UBSan. The existing flag
-fsanitize-undefined-trap-on-error has been made an alias of
-fsanitize-trap=undefined.
This change also cleans up some awkward behavior around the combination
of -fsanitize-trap=undefined and -fsanitize=undefined. Previously we
would reject command lines containing the combination of these two flags,
as -fsanitize=vptr is not compatible with trapping. This required the
creation of -fsanitize=undefined-trap, which excluded -fsanitize=vptr
(and -fsanitize=function, but this seems like an oversight).
Now, -fsanitize=undefined is an alias for -fsanitize=undefined-trap,
and if -fsanitize-trap=undefined is specified, we treat -fsanitize=vptr
as an "unsupported" flag, which means that we error out if the flag is
specified explicitly, but implicitly disable it if the flag was implied
by -fsanitize=undefined.
Differential Revision: http://reviews.llvm.org/D10464
llvm-svn: 240105
Summary:
Introduce ToolChain::getSupportedSanitizers() that would return the set
of sanitizers available on given toolchain. By default, these are
sanitizers which don't necessarily require runtime support (i.e.
set from -fsanitize=undefined-trap).
Sanitizers (ASan, DFSan, TSan, MSan etc.) which cannot function
without runtime library are marked as supported only on platforms
for which we actually build these runtimes.
This would allow more fine-grained checks in the future: for instance,
we have to restrict availability of -fsanitize=vptr to Mac OS 10.9+
(PR23539)
Update test cases accrodingly: add tests for certain unsupported
configurations, remove test cases for -fsanitize=vptr + PS4
integration, as we don't build the runtime for PS4 at the moment.
Test Plan: regression test suite
Reviewers: pcc
Subscribers: cfe-commits, filcab, eugenis, thakis, kubabrecka, emaste, rsmith
Differential Revision: http://reviews.llvm.org/D10467
llvm-svn: 239953
Don't print unused-argument warning for sanitizer-specific feature flag
if this sanitizer was eanbled, and later disabled in the command line.
For example, now:
clang -fsanitize=address -fsanitize-coverage=bb -fno-sanitize=address a.cc
doesn't print warning, but
clang -fsanitize-coverage=bb
does. Same holds for -fsanitize-address-field-padding= and
-fsanitize-memory-track-origins= flags.
Fixes PR23604.
llvm-svn: 237870
Summary:
Possible coverage levels are:
* -fsanitize-coverage=func - function-level coverage
* -fsanitize-coverage=bb - basic-block-level coverage
* -fsanitize-coverage=edge - edge-level coverage
Extra features are:
* -fsanitize-coverage=indirect-calls - coverage for indirect calls
* -fsanitize-coverage=trace-bb - tracing for basic blocks
* -fsanitize-coverage=trace-cmp - tracing for cmp instructions
* -fsanitize-coverage=8bit-counters - frequency counters
Levels and features can be combined in comma-separated list, and
can be disabled by subsequent -fno-sanitize-coverage= flags, e.g.:
-fsanitize-coverage=bb,trace-bb,8bit-counters -fno-sanitize-coverage=trace-bb
is equivalient to:
-fsanitize-coverage=bb,8bit-counters
Original semantics of -fsanitize-coverage flag is preserved:
* -fsanitize-coverage=0 disables the coverage
* -fsanitize-coverage=1 is a synonym for -fsanitize-coverage=func
* -fsanitize-coverage=2 is a synonym for -fsanitize-coverage=bb
* -fsanitize-coverage=3 is a synonym for -fsanitize-coverage=edge
* -fsanitize-coverage=4 is a synonym for -fsanitize-coverage=edge,indirect-calls
Driver tries to diagnose invalid flag usage, in particular:
* At most one level (func,bb,edge) must be specified.
* "trace-bb" and "8bit-counters" features require some level to be specified.
See test case for more examples.
Test Plan: regression test suite
Reviewers: kcc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D9577
llvm-svn: 236790
Summary:
The next step is to add user-friendly control over these options
to driver via -fsanitize-coverage= option.
Test Plan: regression test suite
Reviewers: kcc
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D9545
llvm-svn: 236756
Embed UBSan runtime into TSan and MSan runtimes in the same as we do
in ASan. Extend UBSan test suite to also run tests for these
combinations.
llvm-svn: 235953
This uses the same class metadata currently used for virtual call and
cast checks.
The new flag is -fsanitize=cfi-nvcall. For consistency, the -fsanitize=cfi-vptr
flag has been renamed -fsanitize=cfi-vcall.
Differential Revision: http://reviews.llvm.org/D8756
llvm-svn: 233874
Summary:
Change the way we use ASan and UBSan together. Instead of keeping two
separate runtimes (libclang_rt.asan and libclang_rt.ubsan), embed UBSan
into ASan and get rid of libclang_rt.ubsan. If UBSan is not supported on
a platform, all UBSan sources are just compiled into dummy empty object
files. UBSan initialization code (e.g. flag parsing) is directly called
from ASan initialization, so we are able to enforce correct
initialization order.
This mirrors the approach we already use for ASan+LSan. This change doesn't
modify the way we use standalone UBSan.
Test Plan: regression test suite
Reviewers: kubabrecka, zaks.anna, kcc, rsmith
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D8645
llvm-svn: 233860
We are not able to make a reliable solution for using UBSan together
with other sanitizers with runtime support (and sanitizer_common).
Instead, we want to follow the path used for LSan: have a "standalone"
UBSan tool, and plug-in UBSan that would be explicitly embedded into
specific sanitizers (in short term, it will be only ASan).
llvm-svn: 232829
This scheme checks that pointer and lvalue casts are made to an object of
the correct dynamic type; that is, the dynamic type of the object must be
a derived class of the pointee type of the cast. The checks are currently
only introduced where the class being casted to is a polymorphic class.
Differential Revision: http://reviews.llvm.org/D8312
llvm-svn: 232241