GNU linkers accept both variants and at least for MIPS target gcc passes
joined variant of the '-m' option.
Differential Revision: http://reviews.llvm.org/D14133
llvm-svn: 251497
This is a basic implementation that allows lld to emit binaries
consumable by the HSA runtime.
Differential Revision: http://reviews.llvm.org/D11267
llvm-svn: 246155
Add PT_PHDR segment depending on its availability in linker script's
PHDRS command, fallback if no linker script is given.
Handle FILEHDR, PHDRS and FLAGS attributes of program header.
Differential Revision: http://reviews.llvm.org/D11589
llvm-svn: 244743
Put sections to segments according to linker scripts if available.
Rework the code of TargetLayout::assignSectionsToSegments so it operates
on the given list of segments, which can be either read from linker scripts
or constructed as before.
Handle NONE segments defined in linker scripts by putting corresponding sections
to PT_NULL segment.
Consider flags set for segments through linker scripts.
Differential Revision: http://reviews.llvm.org/D10918
llvm-svn: 243002
This patch fixes the TLS dynamic variable exportation from .got.plt segments,
created by General-dynamic relocations (TLSDESC). Current code only export
symbols in dynamic table from .got sections.
llvm-svn: 242142
When using a linker script expression to change the address of a section, even
if the new address is more than a page of distance from the old address, lld
may put everything in the same segment, forcing it to be unnecessarily large.
This patch changes the logic in Segment::assignVirtualAddress() and
Segment::assignFileOffsets() to allow the segment to be sliced into two or more
if it detects a linker script expression that changes a section address.
Differential Revision: http://reviews.llvm.org/D10952
llvm-svn: 242096
This is GNU ELF linker extension used particularly by LibC code.
If input object files contain section named XXX, and the XXX is a valid C
identifier, and there are undefined or weak symbols __start_XXX/__stop_XXX,
linker should define __start_XXX/__stop_XXX symbols point to the begin/end
of the XXX section correspondingly.
For example, without support of this extension statically linked executables
for X86_64 and Mips (maybe other) targets do not flush IO buffers at the end
of executing.
llvm-svn: 241341
This patch adds initial general-dynamic TLS support for AArch64. Currently
no optimization is done to realx for more performance-wise models (initial-exec
or local-exec). This patch also only currently handles correctly executable
generation, although priliminary DSO support through PLT specific creation
is also added.
With this change clang/llvm bootstrap with lld is possible in static configuration
(some DSO creation fails due missing Linker script support, not AArch64 specific),
although make check also shows some issues.
llvm-svn: 241192
Some compilers may not add the section symbol in '.symtab' for the
.init_array and 'ldd' just ignore it. It results in global constructor
not being called in final executable.
This patch add both '.init_array' and '.fini_array' to be added in
Atom graph generation even when the section contains no symbol. An
already existing testcase is modified to check for such scenario.
The issue fixes the llvm test-suite regressions for both Single
and MultiSource files.
llvm-svn: 240570
Current approach for initial-exec in ELF/x86_64 is to create a GOT entry
and change the relocation to R_X86_64_PC32 to be handled as a GOT offfset.
However there are two issues with this approach: 1. the R_X86_64_PC32 is
not really required since the GOT relocation will be handle dynamically and
2. the TLS symbols are not being exported externally and then correct
realocation are not being applied.
This patch fixes the R_X86_64_GOTTPOFF handling by just emitting a
R_X86_64_TPOFF64 dynamically one; it also sets R_X86_64_TPOFF64 to be
handled by runtime one. For second part, the patches uses a similar
strategy used for aarch64, by reimplementing buildDynamicSymbolTable
from X86_64ExecutableWriter and adding the TLS symbols in the dynamic
symbol table.
Some tests had to be adjusted due the now missing R_X86_64_PC32 relocation.
With this test the simple testcase:
* t1.c:
__thread int t0;
__thread int t1;
__thread int t2;
__thread int t3;
* t0.c:
extern __thread int t0;
extern __thread int t1;
extern __thread int t2;
extern __thread int t3;
__thread int t4;
__thread int t5;
__thread int t6;
__thread int t7;
int main ()
{
t0 = 1;
t1 = 2;
t2 = 3;
t3 = 4;
t4 = 5;
t5 = 6;
t6 = 7;
t7 = 8;
printf ("%i %i %i %i\n", t0, t1, t2, t3);
printf ("%i %i %i %i\n", t4, t5, t6, t7);
return 0;
}
Shows correct output for x86_64.
llvm-svn: 239908
This patch fixes the wrong .tbss segment size generated for cases where
multiple modules have non initialized threads variables. For instance:
* t0.c
__thread int x0;
__thread int x1;
__thread int x2;
extern __thread int e0;
extern __thread int e1;
extern __thread int e2;
extern __thread int e3;
int foo0 ()
{
return x0;
}
int main ()
{
return x0;
}
* t1.c
__thread int e0;
__thread int e1;
__thread int e2;
__thread int e3;
lld is generating (for aarch64):
[14] .tbss NOBITS 0000000000401000 00001000
0000000000000010 0000000000000000 WAT 0 0 4
Where is just taking in consideration the largest tbss segment, not all
from all objects. ld generates a correct output:
[17] .tbss NOBITS 0000000000410dec 00000dec
000000000000001c 0000000000000000 WAT 0 0 4
This issue is at 'lib/ReaderWriter/ELF/SegmentChunks.cpp' where
Segment<ELFT>::assignVirtualAddress is setting wrong slice values, not taking care
of although tbss segments file size does noy play role in other segment virtual
address placement, its size should still be considered.
llvm-svn: 239906
Add method to query segments for specified output section name.
Return error if the section is assigned to unknown segment.
Check matching of sections to segments during layout on the subject of correctness.
NOTE: no actual functionality of using custom segments is implemented.
Differential Revision: http://reviews.llvm.org/D10359
llvm-svn: 239719