forked from OSchip/llvm-project
30 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Francis Visoiu Mistrih | 0b8dd4488e |
[MachineScheduler] Order FI-based memops based on stack direction
It makes more sense to order FI-based memops in descending order when the stack goes down. This allows offsets to stay "consecutive" and allow easier pattern matching. llvm-svn: 347906 |
|
Francis Visoiu Mistrih | 879087ce5b |
[MachineScheduler] Add support for clustering mem ops with FI base operands
Before this patch, the following stores in `merge_fail` would fail to be merged, while they would get merged in `merge_ok`: ``` void use(unsigned long long *); void merge_fail(unsigned key, unsigned index) { unsigned long long args[8]; args[0] = key; args[1] = index; use(args); } void merge_ok(unsigned long long *dst, unsigned a, unsigned b) { dst[0] = a; dst[1] = b; } ``` The reason is that `getMemOpBaseImmOfs` would return false for FI base operands. This adds support for this. Differential Revision: https://reviews.llvm.org/D54847 llvm-svn: 347747 |
|
Matthias Braun | 4f82406c46 |
SelectionDAG: Reuse bigger sized constants in memset expansion.
When implementing memset's today we often see this pattern: $x0 = MOV 0xXYXYXYXYXYXYXYXY store $x0, ... $w1 = MOV 0xXYXYXYXY store $w1, ... We first create a 64bit constant in a 64bit register with all bytes the same and then create a 32bit constant with all bytes the same in a 32bit register. In many targets we could just access the lower byte of the 64bit register instead. - Ideally this would be handled by the ConstantHoist pass but it runs too early when memset isn't expanded yet. - The memset expansion code already had this optimization implemented, however SelectionDAG constantfolding would constantfold the "trunc(bigconstnat)" pattern to "smallconstant". - This patch makes the memset expansion mark the constant as Opaque and stop DAGCombiner from constant folding in this situation. (Similar to how ConstantHoisting marks things as Opaque to avoid folding ADD/SUB/etc.) Differential Revision: https://reviews.llvm.org/D53181 llvm-svn: 345102 |
|
JF Bastien | 2920061105 |
ARM64: improve non-zero memset isel by ~2x
Summary: I added a few ARM64 memset codegen tests in r341406 and r341493, and annotated where the generated code was bad. This patch fixes the majority of the issues by requesting that a 2xi64 vector be used for memset of 32 bytes and above. The patch leaves the former request for f128 unchanged, despite f128 materialization being suboptimal: doing otherwise runs into other asserts in isel and makes this patch too broad. This patch hides the issue that was present in bzero_40_stack and bzero_72_stack because the code now generates in a better order which doesn't have the store offset issue. I'm not aware of that issue appearing elsewhere at the moment. <rdar://problem/44157755> Reviewers: t.p.northover, MatzeB, javed.absar Subscribers: eraman, kristof.beyls, chrib, dexonsmith, llvm-commits Differential Revision: https://reviews.llvm.org/D51706 llvm-svn: 341558 |
|
JF Bastien | ec812ce3d6 |
NFC: more memset inline arm64 coverage
I'm looking at some codegen optimization in this area and want to make sure I understand the current codegen and don't regress it. This patch further expands the tests (which I already expanded in r341406) to capture more of the current code generation when it comes to stack-based small non-zero memset on arm64. This patch annotates some potential fixes. llvm-svn: 341493 |
|
JF Bastien | fd458fe205 |
NFC: expand memset inline arm64 coverage
I'm looking at some codegen optimization in this area and want to make sure I understand the current codegen and don't regress it. This patch simply expands the two existing tests to capture more of the current code generation when it comes to heap-based and stack-based small memset on arm64. The tested code is already pretty good, notably when it comes to using STP, FP stores, FP immediate generation, and folding one of the stores into a stack spill when possible. The uses of STUR could be improved, and some more pairing could occur. Straying from bzero patterns currently yield suboptimal code, and I expect a variety of small changes could make things way better. llvm-svn: 341406 |
|
Daniel Neilson | 1e68724d24 |
Remove alignment argument from memcpy/memmove/memset in favour of alignment attributes (Step 1)
Summary: This is a resurrection of work first proposed and discussed in Aug 2015: http://lists.llvm.org/pipermail/llvm-dev/2015-August/089384.html and initially landed (but then backed out) in Nov 2015: http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html The @llvm.memcpy/memmove/memset intrinsics currently have an explicit argument which is required to be a constant integer. It represents the alignment of the dest (and source), and so must be the minimum of the actual alignment of the two. This change is the first in a series that allows source and dest to each have their own alignments by using the alignment attribute on their arguments. In this change we: 1) Remove the alignment argument. 2) Add alignment attributes to the source & dest arguments. We, temporarily, require that the alignments for source & dest be equal. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 100, i32 4, i1 false) will now read call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 4 %dest, i8* align 4 %src, i32 100, i1 false) Downstream users may have to update their lit tests that check for @llvm.memcpy/memmove/memset call/declaration patterns. The following extended sed script may help with updating the majority of your tests, but it does not catch all possible patterns so some manual checking and updating will be required. s~declare void @llvm\.mem(set|cpy|move)\.p([^(]*)\((.*), i32, i1\)~declare void @llvm.mem\1.p\2(\3, i1)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* \3, i8 \4, i8 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* \3, i8 \4, i16 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* \3, i8 \4, i32 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* \3, i8 \4, i64 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* \3, i8 \4, i128 \5, i1 \6)~g s~call void @llvm\.memset\.p([^(]*)i8\(i8([^*]*)\* (.*), i8 (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i8(i8\2* align \6 \3, i8 \4, i8 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i16\(i8([^*]*)\* (.*), i8 (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i16(i8\2* align \6 \3, i8 \4, i16 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i32\(i8([^*]*)\* (.*), i8 (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i32(i8\2* align \6 \3, i8 \4, i32 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i64\(i8([^*]*)\* (.*), i8 (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i64(i8\2* align \6 \3, i8 \4, i64 \5, i1 \7)~g s~call void @llvm\.memset\.p([^(]*)i128\(i8([^*]*)\* (.*), i8 (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.memset.p\1i128(i8\2* align \6 \3, i8 \4, i128 \5, i1 \7)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* \4, i8\5* \6, i8 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* \4, i8\5* \6, i16 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* \4, i8\5* \6, i32 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* \4, i8\5* \6, i64 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 [01], i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* \4, i8\5* \6, i128 \7, i1 \8)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i8\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i8 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i8(i8\3* align \8 \4, i8\5* align \8 \6, i8 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i16\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i16 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i16(i8\3* align \8 \4, i8\5* align \8 \6, i16 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i32\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i32 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i32(i8\3* align \8 \4, i8\5* align \8 \6, i32 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i64\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i64 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i64(i8\3* align \8 \4, i8\5* align \8 \6, i64 \7, i1 \9)~g s~call void @llvm\.mem(cpy|move)\.p([^(]*)i128\(i8([^*]*)\* (.*), i8([^*]*)\* (.*), i128 (.*), i32 ([0-9]*), i1 ([^)]*)\)~call void @llvm.mem\1.p\2i128(i8\3* align \8 \4, i8\5* align \8 \6, i128 \7, i1 \9)~g The remaining changes in the series will: Step 2) Expand the IRBuilder API to allow creation of memcpy/memmove with differing source and dest alignments. Step 3) Update Clang to use the new IRBuilder API. Step 4) Update Polly to use the new IRBuilder API. Step 5) Update LLVM passes that create memcpy/memmove calls to use the new IRBuilder API, and those that use use MemIntrinsicInst::[get|set]Alignment() to use getDestAlignment() and getSourceAlignment() instead. Step 6) Remove the single-alignment IRBuilder API for memcpy/memmove, and the MemIntrinsicInst::[get|set]Alignment() methods. Reviewers: pete, hfinkel, lhames, reames, bollu Reviewed By: reames Subscribers: niosHD, reames, jholewinski, qcolombet, jfb, sanjoy, arsenm, dschuff, dylanmckay, mehdi_amini, sdardis, nemanjai, david2050, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, aheejin, kbarton, JDevlieghere, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, sabuasal, llvm-commits Differential Revision: https://reviews.llvm.org/D41675 llvm-svn: 322965 |
|
Geoff Berry | bb23df92b5 |
[AArch64] Fix bug in store of vector 0 DAGCombine.
Summary: Avoid using XZR/WZR directly as operands to split stores of zero vectors. Doing so can lead to the XZR/WZR being used by an instruction that doesn't allow it (e.g. add). Fixes bug 34674. Reviewers: t.p.northover, efriedma, MatzeB Subscribers: aemerson, rengolin, javed.absar, mcrosier, eraman, llvm-commits, kristof.beyls Differential Revision: https://reviews.llvm.org/D38146 llvm-svn: 313916 |
|
Nirav Dave | 54e22f33d9 |
In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Recommiting with compiler time improvements Recommitting after fixup of 32-bit aliasing sign offset bug in DAGCombiner. * Simplify Consecutive Merge Store Candidate Search Now that address aliasing is much less conservative, push through simplified store merging search and chain alias analysis which only checks for parallel stores through the chain subgraph. This is cleaner as the separation of non-interfering loads/stores from the store-merging logic. When merging stores search up the chain through a single load, and finds all possible stores by looking down from through a load and a TokenFactor to all stores visited. This improves the quality of the output SelectionDAG and the output Codegen (save perhaps for some ARM cases where we correctly constructs wider loads, but then promotes them to float operations which appear but requires more expensive constant generation). Some minor peephole optimizations to deal with improved SubDAG shapes (listed below) Additional Minor Changes: 1. Finishes removing unused AliasLoad code 2. Unifies the chain aggregation in the merged stores across code paths 3. Re-add the Store node to the worklist after calling SimplifyDemandedBits. 4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is arbitrary, but seems sufficient to not cause regressions in tests. 5. Remove Chain dependencies of Memory operations on CopyfromReg nodes as these are captured by data dependence 6. Forward loads-store values through tokenfactors containing {CopyToReg,CopyFromReg} Values. 7. Peephole to convert buildvector of extract_vector_elt to extract_subvector if possible (see CodeGen/AArch64/store-merge.ll) 8. Store merging for the ARM target is restricted to 32-bit as some in some contexts invalid 64-bit operations are being generated. This can be removed once appropriate checks are added. This finishes the change Matt Arsenault started in r246307 and jyknight's original patch. Many tests required some changes as memory operations are now reorderable, improving load-store forwarding. One test in particular is worth noting: CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store forwarding converts a load-store pair into a parallel store and a memory-realized bitcast of the same value. However, because we lose the sharing of the explicit and implicit store values we must create another local store. A similar transformation happens before SelectionDAG as well. Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle llvm-svn: 297695 |
|
Chandler Carruth | ce52b80744 |
[SDAG] Revert r296476 (and r296486, r296668, r296690).
This patch causes compile times for some patterns to explode. I have a (large, unreduced) test case that slows down by more than 20x and several test cases slow down by 2x. I'm sending some of the test cases directly to Nirav and following up with more details in the review log, but this should unblock anyone else hitting this. llvm-svn: 296862 |
|
Nirav Dave | f830dec3f2 |
In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Recommiting after fixup of 32-bit aliasing sign offset bug in DAGCombiner. * Simplify Consecutive Merge Store Candidate Search Now that address aliasing is much less conservative, push through simplified store merging search and chain alias analysis which only checks for parallel stores through the chain subgraph. This is cleaner as the separation of non-interfering loads/stores from the store-merging logic. When merging stores search up the chain through a single load, and finds all possible stores by looking down from through a load and a TokenFactor to all stores visited. This improves the quality of the output SelectionDAG and the output Codegen (save perhaps for some ARM cases where we correctly constructs wider loads, but then promotes them to float operations which appear but requires more expensive constant generation). Some minor peephole optimizations to deal with improved SubDAG shapes (listed below) Additional Minor Changes: 1. Finishes removing unused AliasLoad code 2. Unifies the chain aggregation in the merged stores across code paths 3. Re-add the Store node to the worklist after calling SimplifyDemandedBits. 4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is arbitrary, but seems sufficient to not cause regressions in tests. 5. Remove Chain dependencies of Memory operations on CopyfromReg nodes as these are captured by data dependence 6. Forward loads-store values through tokenfactors containing {CopyToReg,CopyFromReg} Values. 7. Peephole to convert buildvector of extract_vector_elt to extract_subvector if possible (see CodeGen/AArch64/store-merge.ll) 8. Store merging for the ARM target is restricted to 32-bit as some in some contexts invalid 64-bit operations are being generated. This can be removed once appropriate checks are added. This finishes the change Matt Arsenault started in r246307 and jyknight's original patch. Many tests required some changes as memory operations are now reorderable, improving load-store forwarding. One test in particular is worth noting: CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store forwarding converts a load-store pair into a parallel store and a memory-realized bitcast of the same value. However, because we lose the sharing of the explicit and implicit store values we must create another local store. A similar transformation happens before SelectionDAG as well. Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle llvm-svn: 296476 |
|
Nirav Dave | 73cd0194cf |
Revert "In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled."
This reverts commit r296252 until 256-bit operations are more efficiently generated in X86. llvm-svn: 296279 |
|
Nirav Dave | beabf456df |
In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Recommiting after fixup of 32-bit aliasing sign offset bug in DAGCombiner. * Simplify Consecutive Merge Store Candidate Search Now that address aliasing is much less conservative, push through simplified store merging search and chain alias analysis which only checks for parallel stores through the chain subgraph. This is cleaner as the separation of non-interfering loads/stores from the store-merging logic. When merging stores search up the chain through a single load, and finds all possible stores by looking down from through a load and a TokenFactor to all stores visited. This improves the quality of the output SelectionDAG and the output Codegen (save perhaps for some ARM cases where we correctly constructs wider loads, but then promotes them to float operations which appear but requires more expensive constant generation). Some minor peephole optimizations to deal with improved SubDAG shapes (listed below) Additional Minor Changes: 1. Finishes removing unused AliasLoad code 2. Unifies the chain aggregation in the merged stores across code paths 3. Re-add the Store node to the worklist after calling SimplifyDemandedBits. 4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is arbitrary, but seems sufficient to not cause regressions in tests. 5. Remove Chain dependencies of Memory operations on CopyfromReg nodes as these are captured by data dependence 6. Forward loads-store values through tokenfactors containing {CopyToReg,CopyFromReg} Values. 7. Peephole to convert buildvector of extract_vector_elt to extract_subvector if possible (see CodeGen/AArch64/store-merge.ll) 8. Store merging for the ARM target is restricted to 32-bit as some in some contexts invalid 64-bit operations are being generated. This can be removed once appropriate checks are added. This finishes the change Matt Arsenault started in r246307 and jyknight's original patch. Many tests required some changes as memory operations are now reorderable, improving load-store forwarding. One test in particular is worth noting: CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store forwarding converts a load-store pair into a parallel store and a memory-realized bitcast of the same value. However, because we lose the sharing of the explicit and implicit store values we must create another local store. A similar transformation happens before SelectionDAG as well. Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle llvm-svn: 296252 |
|
Nirav Dave | 93f9d5ce04 |
Revert "In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled."
This reverts commit r293893 which is miscompiling lua on ARM and bootstrapping for x86-windows. llvm-svn: 293915 |
|
Nirav Dave | 4442667fc5 |
In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Recommiting after fixing X86 inc/dec chain bug. * Simplify Consecutive Merge Store Candidate Search Now that address aliasing is much less conservative, push through simplified store merging search and chain alias analysis which only checks for parallel stores through the chain subgraph. This is cleaner as the separation of non-interfering loads/stores from the store-merging logic. When merging stores search up the chain through a single load, and finds all possible stores by looking down from through a load and a TokenFactor to all stores visited. This improves the quality of the output SelectionDAG and the output Codegen (save perhaps for some ARM cases where we correctly constructs wider loads, but then promotes them to float operations which appear but requires more expensive constant generation). Some minor peephole optimizations to deal with improved SubDAG shapes (listed below) Additional Minor Changes: 1. Finishes removing unused AliasLoad code 2. Unifies the chain aggregation in the merged stores across code paths 3. Re-add the Store node to the worklist after calling SimplifyDemandedBits. 4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is arbitrary, but seems sufficient to not cause regressions in tests. 5. Remove Chain dependencies of Memory operations on CopyfromReg nodes as these are captured by data dependence 6. Forward loads-store values through tokenfactors containing {CopyToReg,CopyFromReg} Values. 7. Peephole to convert buildvector of extract_vector_elt to extract_subvector if possible (see CodeGen/AArch64/store-merge.ll) 8. Store merging for the ARM target is restricted to 32-bit as some in some contexts invalid 64-bit operations are being generated. This can be removed once appropriate checks are added. This finishes the change Matt Arsenault started in r246307 and jyknight's original patch. Many tests required some changes as memory operations are now reorderable, improving load-store forwarding. One test in particular is worth noting: CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store forwarding converts a load-store pair into a parallel store and a memory-realized bitcast of the same value. However, because we lose the sharing of the explicit and implicit store values we must create another local store. A similar transformation happens before SelectionDAG as well. Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle llvm-svn: 293893 |
|
Nirav Dave | d32a421f75 |
Revert "In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled."
This reverts commit r293184 which is failing in LTO builds llvm-svn: 293188 |
|
Nirav Dave | de6516c466 |
In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
* Simplify Consecutive Merge Store Candidate Search Now that address aliasing is much less conservative, push through simplified store merging search and chain alias analysis which only checks for parallel stores through the chain subgraph. This is cleaner as the separation of non-interfering loads/stores from the store-merging logic. When merging stores search up the chain through a single load, and finds all possible stores by looking down from through a load and a TokenFactor to all stores visited. This improves the quality of the output SelectionDAG and the output Codegen (save perhaps for some ARM cases where we correctly constructs wider loads, but then promotes them to float operations which appear but requires more expensive constant generation). Some minor peephole optimizations to deal with improved SubDAG shapes (listed below) Additional Minor Changes: 1. Finishes removing unused AliasLoad code 2. Unifies the chain aggregation in the merged stores across code paths 3. Re-add the Store node to the worklist after calling SimplifyDemandedBits. 4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is arbitrary, but seems sufficient to not cause regressions in tests. 5. Remove Chain dependencies of Memory operations on CopyfromReg nodes as these are captured by data dependence 6. Forward loads-store values through tokenfactors containing {CopyToReg,CopyFromReg} Values. 7. Peephole to convert buildvector of extract_vector_elt to extract_subvector if possible (see CodeGen/AArch64/store-merge.ll) 8. Store merging for the ARM target is restricted to 32-bit as some in some contexts invalid 64-bit operations are being generated. This can be removed once appropriate checks are added. This finishes the change Matt Arsenault started in r246307 and jyknight's original patch. Many tests required some changes as memory operations are now reorderable, improving load-store forwarding. One test in particular is worth noting: CodeGen/PowerPC/ppc64-align-long-double.ll - Improved load-store forwarding converts a load-store pair into a parallel store and a memory-realized bitcast of the same value. However, because we lose the sharing of the explicit and implicit store values we must create another local store. A similar transformation happens before SelectionDAG as well. Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle llvm-svn: 293184 |
|
Nirav Dave | f5bf03c7ef |
Revert "In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled."
Reverting due to ARM MCJIT and MIPS LLD error. This reverts commit r289659. llvm-svn: 289667 |
|
Nirav Dave | 8527ab0ad2 |
In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Retrying after fixing after removing load-store factoring through token factors in favor of improved token factor operand pruning Simplify Consecutive Merge Store Candidate Search Now that address aliasing is much less conservative, push through simplified store merging search which only checks for parallel stores through the chain subgraph. This is cleaner as the separation of non-interfering loads/stores from the store-merging logic. Whem merging stores, search up the chain through a single load, and finds all possible stores by looking down from through a load and a TokenFactor to all stores visited. This improves the quality of the output SelectionDAG and generally the output CodeGen (with some exceptions). Additional Minor Changes: 1. Finishes removing unused AliasLoad code 2. Unifies the the chain aggregation in the merged stores across code paths 3. Re-add the Store node to the worklist after calling SimplifyDemandedBits. 4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is arbitrary, but seemed sufficient to not cause regressions in tests. This finishes the change Matt Arsenault started in r246307 and jyknight's original patch. Many tests required some changes as memory operations are now reorderable. Some tests relying on the order were changed to use volatile memory operations Noteworthy tests: CodeGen/AArch64/argument-blocks.ll - It's not entirely clear what the test_varargs_stackalign test is supposed to be asserting, but the new code looks right. CodeGen/AArch64/arm64-memset-inline.lli - CodeGen/AArch64/arm64-stur.ll - CodeGen/ARM/memset-inline.ll - The backend now generates *worse* code due to store merging succeeding, as we do do a 16-byte constant-zero store efficiently. CodeGen/AArch64/merge-store.ll - Improved, but there still seems to be an extraneous vector insert from an element to itself? CodeGen/PowerPC/ppc64-align-long-double.ll - Worse code emitted in this case, due to the improved store->load forwarding. CodeGen/X86/dag-merge-fast-accesses.ll - CodeGen/X86/MergeConsecutiveStores.ll - CodeGen/X86/stores-merging.ll - CodeGen/Mips/load-store-left-right.ll - Restored correct merging of non-aligned stores CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll - Improved. Correctly merges buffer_store_dword calls CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll - Improved. Sidesteps loading a stored value and merges two stores CodeGen/X86/pr18023.ll - This test has been removed, as it was asserting incorrect behavior. Non-volatile stores *CAN* be moved past volatile loads, and now are. CodeGen/X86/vector-idiv.ll - CodeGen/X86/vector-lzcnt-128.ll - It's basically impossible to tell what these tests are actually testing. But, looks like the code got better due to the memory operations being recognized as non-aliasing. CodeGen/X86/win32-eh.ll - Both loads of the securitycookie are now merged. Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, dsanders, resistor, tstellarAMD, t.p.northover, spatel Differential Revision: https://reviews.llvm.org/D14834 llvm-svn: 289659 |
|
Nirav Dave | bedb5d906c |
Revert "In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled."
This reverts commit r289221 which appears to be triggering an assertion llvm-svn: 289226 |
|
Nirav Dave | fd51ff4fd8 |
In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Retrying after fixing overly aggressive load-store forwarding optimization. Simplify Consecutive Merge Store Candidate Search Now that address aliasing is much less conservative, push through simplified store merging search which only checks for parallel stores through the chain subgraph. This is cleaner as the separation of non-interfering loads/stores from the store-merging logic. Whem merging stores, search up the chain through a single load, and finds all possible stores by looking down from through a load and a TokenFactor to all stores visited. This improves the quality of the output SelectionDAG and generally the output CodeGen (with some exceptions). Additional Minor Changes: 1. Finishes removing unused AliasLoad code 2. Unifies the the chain aggregation in the merged stores across code paths 3. Re-add the Store node to the worklist after calling SimplifyDemandedBits. 4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is arbitrary, but seemed sufficient to not cause regressions in tests. This finishes the change Matt Arsenault started in r246307 and jyknight's original patch. Many tests required some changes as memory operations are now reorderable. Some tests relying on the order were changed to use volatile memory operations Noteworthy tests: CodeGen/AArch64/argument-blocks.ll - It's not entirely clear what the test_varargs_stackalign test is supposed to be asserting, but the new code looks right. CodeGen/AArch64/arm64-memset-inline.lli - CodeGen/AArch64/arm64-stur.ll - CodeGen/ARM/memset-inline.ll - The backend now generates *worse* code due to store merging succeeding, as we do do a 16-byte constant-zero store efficiently. CodeGen/AArch64/merge-store.ll - Improved, but there still seems to be an extraneous vector insert from an element to itself? CodeGen/PowerPC/ppc64-align-long-double.ll - Worse code emitted in this case, due to the improved store->load forwarding. CodeGen/X86/dag-merge-fast-accesses.ll - CodeGen/X86/MergeConsecutiveStores.ll - CodeGen/X86/stores-merging.ll - CodeGen/Mips/load-store-left-right.ll - Restored correct merging of non-aligned stores CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll - Improved. Correctly merges buffer_store_dword calls CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll - Improved. Sidesteps loading a stored value and merges two stores CodeGen/X86/pr18023.ll - This test has been removed, as it was asserting incorrect behavior. Non-volatile stores *CAN* be moved past volatile loads, and now are. CodeGen/X86/vector-idiv.ll - CodeGen/X86/vector-lzcnt-128.ll - It's basically impossible to tell what these tests are actually testing. But, looks like the code got better due to the memory operations being recognized as non-aliasing. CodeGen/X86/win32-eh.ll - Both loads of the securitycookie are now merged. Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, dsanders, resistor, tstellarAMD, t.p.northover, spatel Differential Revision: https://reviews.llvm.org/D14834 llvm-svn: 289221 |
|
Nirav Dave | a81682aad4 |
Revert "In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled."
This reverts commit r284151 which appears to be triggering a LTO failures on Hexagon llvm-svn: 284157 |
|
Nirav Dave | 4b36957243 |
In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Retrying after upstream changes. Simplify Consecutive Merge Store Candidate Search Now that address aliasing is much less conservative, push through simplified store merging search which only checks for parallel stores through the chain subgraph. This is cleaner as the separation of non-interfering loads/stores from the store-merging logic. Whem merging stores, search up the chain through a single load, and finds all possible stores by looking down from through a load and a TokenFactor to all stores visited. This improves the quality of the output SelectionDAG and generally the output CodeGen (with some exceptions). Additional Minor Changes: 1. Finishes removing unused AliasLoad code 2. Unifies the the chain aggregation in the merged stores across code paths 3. Re-add the Store node to the worklist after calling SimplifyDemandedBits. 4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is arbitrary, but seemed sufficient to not cause regressions in tests. This finishes the change Matt Arsenault started in r246307 and jyknight's original patch. Many tests required some changes as memory operations are now reorderable. Some tests relying on the order were changed to use volatile memory operations Noteworthy tests: CodeGen/AArch64/argument-blocks.ll - It's not entirely clear what the test_varargs_stackalign test is supposed to be asserting, but the new code looks right. CodeGen/AArch64/arm64-memset-inline.lli - CodeGen/AArch64/arm64-stur.ll - CodeGen/ARM/memset-inline.ll - The backend now generates *worse* code due to store merging succeeding, as we do do a 16-byte constant-zero store efficiently. CodeGen/AArch64/merge-store.ll - Improved, but there still seems to be an extraneous vector insert from an element to itself? CodeGen/PowerPC/ppc64-align-long-double.ll - Worse code emitted in this case, due to the improved store->load forwarding. CodeGen/X86/dag-merge-fast-accesses.ll - CodeGen/X86/MergeConsecutiveStores.ll - CodeGen/X86/stores-merging.ll - CodeGen/Mips/load-store-left-right.ll - Restored correct merging of non-aligned stores CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll - Improved. Correctly merges buffer_store_dword calls CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll - Improved. Sidesteps loading a stored value and merges two stores CodeGen/X86/pr18023.ll - This test has been removed, as it was asserting incorrect behavior. Non-volatile stores *CAN* be moved past volatile loads, and now are. CodeGen/X86/vector-idiv.ll - CodeGen/X86/vector-lzcnt-128.ll - It's basically impossible to tell what these tests are actually testing. But, looks like the code got better due to the memory operations being recognized as non-aliasing. CodeGen/X86/win32-eh.ll - Both loads of the securitycookie are now merged. CodeGen/AMDGPU/vgpr-spill-emergency-stack-slot-compute.ll - This test appears to work but no longer exhibits the spill behavior. Reviewers: arsenm, hfinkel, tstellarAMD, jyknight, nhaehnle Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, dsanders, resistor, tstellarAMD, t.p.northover, spatel Differential Revision: https://reviews.llvm.org/D14834 llvm-svn: 284151 |
|
Nirav Dave | e524f50882 |
Revert "In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled."
This reverts commit r282600 due to test failues with MCJIT llvm-svn: 282604 |
|
Nirav Dave | e17e055b75 |
In visitSTORE, always use FindBetterChain, rather than only when UseAA is enabled.
Simplify Consecutive Merge Store Candidate Search Now that address aliasing is much less conservative, push through simplified store merging search which only checks for parallel stores through the chain subgraph. This is cleaner as the separation of non-interfering loads/stores from the store-merging logic. Whem merging stores, search up the chain through a single load, and finds all possible stores by looking down from through a load and a TokenFactor to all stores visited. This improves the quality of the output SelectionDAG and generally the output CodeGen (with some exceptions). Additional Minor Changes: 1. Finishes removing unused AliasLoad code 2. Unifies the the chain aggregation in the merged stores across code paths 3. Re-add the Store node to the worklist after calling SimplifyDemandedBits. 4. Increase GatherAllAliasesMaxDepth from 6 to 18. That number is arbitrary, but seemed sufficient to not cause regressions in tests. This finishes the change Matt Arsenault started in r246307 and jyknight's original patch. Many tests required some changes as memory operations are now reorderable. Some tests relying on the order were changed to use volatile memory operations Noteworthy tests: CodeGen/AArch64/argument-blocks.ll - It's not entirely clear what the test_varargs_stackalign test is supposed to be asserting, but the new code looks right. CodeGen/AArch64/arm64-memset-inline.lli - CodeGen/AArch64/arm64-stur.ll - CodeGen/ARM/memset-inline.ll - The backend now generates *worse* code due to store merging succeeding, as we do do a 16-byte constant-zero store efficiently. CodeGen/AArch64/merge-store.ll - Improved, but there still seems to be an extraneous vector insert from an element to itself? CodeGen/PowerPC/ppc64-align-long-double.ll - Worse code emitted in this case, due to the improved store->load forwarding. CodeGen/X86/dag-merge-fast-accesses.ll - CodeGen/X86/MergeConsecutiveStores.ll - CodeGen/X86/stores-merging.ll - CodeGen/Mips/load-store-left-right.ll - Restored correct merging of non-aligned stores CodeGen/AMDGPU/promote-alloca-stored-pointer-value.ll - Improved. Correctly merges buffer_store_dword calls CodeGen/AMDGPU/si-triv-disjoint-mem-access.ll - Improved. Sidesteps loading a stored value and merges two stores CodeGen/X86/pr18023.ll - This test has been removed, as it was asserting incorrect behavior. Non-volatile stores *CAN* be moved past volatile loads, and now are. CodeGen/X86/vector-idiv.ll - CodeGen/X86/vector-lzcnt-128.ll - It's basically impossible to tell what these tests are actually testing. But, looks like the code got better due to the memory operations being recognized as non-aliasing. CodeGen/X86/win32-eh.ll - Both loads of the securitycookie are now merged. CodeGen/AMDGPU/vgpr-spill-emergency-stack-slot-compute.ll - This test appears to work but no longer exhibits the spill behavior. Reviewers: arsenm, hfinkel, tstellarAMD, nhaehnle, jyknight Subscribers: wdng, nhaehnle, nemanjai, arsenm, weimingz, niravd, RKSimon, aemerson, qcolombet, resistor, tstellarAMD, t.p.northover, spatel Differential Revision: https://reviews.llvm.org/D14834 llvm-svn: 282600 |
|
Simon Pilgrim | fc4d4b251d |
[AARCH64] Enable AARCH64 lit tests on windows dev machines
As discussed on PR27654, this patch fixes the triples of a lot of aarch64 tests and enables lit tests on windows This will hopefully help stop cases where windows developers break the aarch64 target Differential Revision: https://reviews.llvm.org/D22191 llvm-svn: 275973 |
|
Pete Cooper | 67cf9a723b |
Revert "Change memcpy/memset/memmove to have dest and source alignments."
This reverts commit r253511. This likely broke the bots in http://lab.llvm.org:8011/builders/clang-ppc64-elf-linux2/builds/20202 http://bb.pgr.jp/builders/clang-3stage-i686-linux/builds/3787 llvm-svn: 253543 |
|
Pete Cooper | 72bc23ef02 |
Change memcpy/memset/memmove to have dest and source alignments.
Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html These intrinsics currently have an explicit alignment argument which is required to be a constant integer. It represents the alignment of the source and dest, and so must be the minimum of those. This change allows source and dest to each have their own alignments by using the alignment attribute on their arguments. The alignment argument itself is removed. There are a few places in the code for which the code needs to be checked by an expert as to whether using only src/dest alignment is safe. For those places, they currently take the minimum of src/dest alignments which matches the current behaviour. For example, code which used to read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false) will now read: call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false) For out of tree owners, I was able to strip alignment from calls using sed by replacing: (call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\) with: $1i1 false) and similarly for memmove and memcpy. I then added back in alignment to test cases which needed it. A similar commit will be made to clang which actually has many differences in alignment as now IRBuilder can generate different source/dest alignments on calls. In IRBuilder itself, a new argument was added. Instead of calling: CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false) you now call CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false) There is a temporary class (IntegerAlignment) which takes the source alignment and rejects implicit conversion from bool. This is to prevent isVolatile here from passing its default parameter to the source alignment. Note, changes in future can now be made to codegen. I didn't change anything here, but this change should enable better memcpy code sequences. Reviewed by Hal Finkel. llvm-svn: 253511 |
|
David Blaikie | 79e6c74981 |
[opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers, replacing them with a single opaque pointer type. This adds an explicit type parameter to the gep instruction so that when the first parameter becomes an opaque pointer type, the type to gep through is still available to the instructions. * This doesn't modify gep operators, only instructions (operators will be handled separately) * Textual IR changes only. Bitcode (including upgrade) and changing the in-memory representation will be in separate changes. * geps of vectors are transformed as: getelementptr <4 x float*> %x, ... ->getelementptr float, <4 x float*> %x, ... Then, once the opaque pointer type is introduced, this will ultimately look like: getelementptr float, <4 x ptr> %x with the unambiguous interpretation that it is a vector of pointers to float. * address spaces remain on the pointer, not the type: getelementptr float addrspace(1)* %x ->getelementptr float, float addrspace(1)* %x Then, eventually: getelementptr float, ptr addrspace(1) %x Importantly, the massive amount of test case churn has been automated by same crappy python code. I had to manually update a few test cases that wouldn't fit the script's model (r228970,r229196,r229197,r229198). The python script just massages stdin and writes the result to stdout, I then wrapped that in a shell script to handle replacing files, then using the usual find+xargs to migrate all the files. update.py: import fileinput import sys import re ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))") def conv(match, line): if not match: return line line = match.groups()[0] if len(match.groups()[5]) == 0: line += match.groups()[2] line += match.groups()[3] line += ", " line += match.groups()[1] line += "\n" return line for line in sys.stdin: if line.find("getelementptr ") == line.find("getelementptr inbounds"): if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("): line = conv(re.match(ibrep, line), line) elif line.find("getelementptr ") != line.find("getelementptr ("): line = conv(re.match(normrep, line), line) sys.stdout.write(line) apply.sh: for name in "$@" do python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name" rm -f "$name.tmp" done The actual commands: From llvm/src: find test/ -name *.ll | xargs ./apply.sh From llvm/src/tools/clang: find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}" From llvm/src/tools/polly: find test/ -name *.ll | xargs ./apply.sh After that, check-all (with llvm, clang, clang-tools-extra, lld, compiler-rt, and polly all checked out). The extra 'rm' in the apply.sh script is due to a few files in clang's test suite using interesting unicode stuff that my python script was throwing exceptions on. None of those files needed to be migrated, so it seemed sufficient to ignore those cases. Reviewers: rafael, dexonsmith, grosser Differential Revision: http://reviews.llvm.org/D7636 llvm-svn: 230786 |
|
Tim Northover | 3b0846e8f7 |
AArch64/ARM64: move ARM64 into AArch64's place
This commit starts with a "git mv ARM64 AArch64" and continues out from there, renaming the C++ classes, intrinsics, and other target-local objects for consistency. "ARM64" test directories are also moved, and tests that began their life in ARM64 use an arm64 triple, those from AArch64 use an aarch64 triple. Both should be equivalent though. This finishes the AArch64 merge, and everyone should feel free to continue committing as normal now. llvm-svn: 209577 |