As preparation for removing the getSubtargetImpl() call from
TargetMachine go ahead and flip the switch on caching the function
dependent subtarget and remove the bare getSubtargetImpl call
from the X86 port. As part of this add a few tests that show we
can generate code and assemble on X86 based on features/cpu on
the Function.
llvm-svn: 232879
thumb-ness similar to the rest of the Module level asm printing
infrastructure as debug info finalization happens after the function
may be missing.
llvm-svn: 232875
With this patch, for this one exact case, we'll generate:
blendps %xmm0, %xmm1, $1
instead of:
insertps %xmm0, %xmm1, $0
If there's a memory operand available for load folding and we're
optimizing for size, we'll still generate the insertps.
The detailed performance data motivation for this may be found in D7866;
in summary, blendps has 2-3x throughput vs. insertps on widely used chips.
Differential Revision: http://reviews.llvm.org/D8332
llvm-svn: 232850
The code this patch removes was there to make sure the text sections went
before the dwarf sections. That is necessary because MachO uses offsets
relative to the start of the file, so adding a section can change relaxations.
The dwarf sections were being printed at the start just to produce symbols
pointing at the start of those sections.
The underlying issue was fixed in r231898. The dwarf sections are now printed
when they are about to be used, which is after we printed the text sections.
To make sure we don't regress, the patch makes the MachO streamer assert
if CodeGen puts anything unexpected after the DWARF sections.
llvm-svn: 232842
The main differences are:
* Split in 32 and 64 bit functions.
* First switch on the Modifier so that we have only one non fully covered
switch.
* Map the fixup kind first to a x86_64 (or i386) specific enum, to make
it easy to handle cases like X86::reloc_riprel_4byte_movq_load.
* Switch on IsPCRel last, which reduces code duplication.
Fixes pr22308.
llvm-svn: 232837
LocalStackSlotPass assumes that isFrameOffsetLegal doesn't change its
answer when the base register changes. Unfortunately this isn't true
in thumb1, where SP-based loads allow a larger offset than
non-SP-based loads, and this causes the base register reuse code to
generate instructions that are unencodable, causing an assertion
failure.
Solve this by adding a BaseReg parameter to isFrameOffsetLegal, which
ARMBaseRegisterInfo can then make use of to give the correct answer.
Differential Revision: http://reviews.llvm.org/D8419
llvm-svn: 232825
This is needed for AVX512 masked scatter/gather support.
The R600 change is necessary to remove a hack that was working around the lack of multiple results.
llvm-svn: 232798
This enables us to remove calls to the subtarget from the TargetMachine
and with a small hack for backends that require global subtarget
information for module level code generation, e.g. mips abi flags, as
mentioned in a fixme in the code.
llvm-svn: 232776
Another case of x86-specific shuffle strength reduction:
avoid generating insert*128 instructions with index 0 because
they are slower than their non-lane-changing blend equivalents.
Shuffle lowering already catches most of these cases, but
the zero vector case and some other paths such as in the
modified test in vector-shuffle-256-v32.ll were getting
through.
Differential Revision: http://reviews.llvm.org/D8366
llvm-svn: 232773
Summary:
CUDA 7.0's libdevice uses slightly different IR to call __nvvm_reflect
and that triggers an assertion in nvvm_reflect optimization pass. This
change allows nvvm_reflect pass to deal with both old and new ways to
pass an argument to __nvvm_reflect.
Test Plan: ninja check-all
Reviewers: eliben, echristo
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D8399
llvm-svn: 232732
There are two main advantages to doing this
* Targets that only need to handle one of the formats specially don't have
to worry about the others. For example, x86 now only registers a
constructor for the COFF streamer.
* Changes to the arguments passed to one format constructor will not impact
the other formats.
llvm-svn: 232699
as we don't necessarily need to do this yet - though we could move
the base class to the TargetMachine as it isn't subtarget dependent.
This reverts commit r232103.
llvm-svn: 232665
Currently v2i64 vectors shifts (non-equal shift amounts) are scalarized, costing 4 x extract, 2 x x86-shifts and 2 x insert instructions - and it gets even more awkward on 32-bit targets.
This patch separately shifts the vector by both shift amounts and then shuffles the partial results back together, costing 2 x shuffles and 2 x sse-shifts instructions (+ 2 movs on pre-AVX hardware).
Note - this patch only improves the SHL / LSHR logical shifts as only these are supported in SSE hardware.
Differential Revision: http://reviews.llvm.org/D8416
llvm-svn: 232660
Memcpy, and other memory intrinsics, typically tries to use LDM/STM if
the source and target addresses are 4-byte aligned. In CodeGenPrepare
look for calls to memory intrinsics and, if the object is on the
stack, 4-byte align it if it's large enough that we expect that memcpy
would want to use LDM/STM to copy it.
Differential Revision: http://reviews.llvm.org/D7908
llvm-svn: 232627
Currently, there are no itineraries defined for ext and ins instructions.
This patch adds these itineraries and uses them in the instruction definitions.
Reviewed By: dsanders
Differential Revision: http://reviews.llvm.org/D7209
llvm-svn: 232613