block pointer that returns a block literal which captures (by copy)
the lambda closure itself. Some aspects of the block literal are left
unspecified, namely the capture variable (which doesn't actually
exist) and the body (which will be filled in by IRgen because it can't
be written as an AST).
Because we're switching to this model, this patch also eliminates
tracking the copy-initialization expression for the block capture of
the conversion function, since that information is now embedded in the
synthesized block literal. -1 side tables FTW.
llvm-svn: 151131
is general goodness because representations of member pointers are
not always equivalent across member pointer types on all ABIs
(even though this isn't really standard-endorsed).
Take advantage of the new information to teach IR-generation how
to do these reinterprets in constant initializers. Make sure this
works when intermingled with hierarchy conversions (although
this is not part of our motivating use case). Doing this in the
constant-evaluator would probably have been better, but that would
require a *lot* of extra structure in the representation of
constant member pointers: you'd really have to track an arbitrary
chain of hierarchy conversions and reinterpretations in order to
get this right. Ultimately, this seems less complex. I also
wasn't quite sure how to extend the constant evaluator to handle
foldings that we don't actually want to treat as extended
constant expressions.
llvm-svn: 150551
- Add atomic-to/from-nonatomic cast types
- Emit atomic operations for arithmetic on atomic types
- Emit non-atomic stores for initialisation of atomic types, but atomic stores and loads for every other store / load
- Add a __atomic_init() intrinsic which does a non-atomic store to an _Atomic() type. This is needed for the corresponding C11 stdatomic.h function.
- Enables the relevant __has_feature() checks. The feature isn't 100% complete yet, but it's done enough that we want people testing it.
Still to do:
- Make the arithmetic operations on atomic types (e.g. Atomic(int) foo = 1; foo++;) use the correct LLVM intrinsic if one exists, not a loop with a cmpxchg.
- Add a signal fence builtin
- Properly set the fenv state in atomic operations on floating point values
- Correctly handle things like _Atomic(_Complex double) which are too large for an atomic cmpxchg on some platforms (this requires working out what 'correctly' means in this context)
- Fix the many remaining corner cases
llvm-svn: 148242
full-expression. Naturally they're inactive before we enter
the block literal expression. This restores the intended
behavior that blocks belong to their enclosing scope.
There's a useful -O0 / compile-time optimization that we're
missing here with activating cleanups following straight-line
code from their inactive beginnings.
llvm-svn: 144268
property references to use a new PseudoObjectExpr
expression which pairs a syntactic form of the expression
with a set of semantic expressions implementing it.
This should significantly reduce the complexity required
elsewhere in the compiler to deal with these kinds of
expressions (e.g. IR generation's special l-value kind,
the static analyzer's Message abstraction), at the lower
cost of specifically dealing with the odd AST structure
of these expressions. It should also greatly simplify
efforts to implement similar language features in the
future, most notably Managed C++'s properties and indexed
properties.
Most of the effort here is in dealing with the various
clients of the AST. I've gone ahead and simplified the
ObjC rewriter's use of properties; other clients, like
IR-gen and the static analyzer, have all the old
complexity *and* all the new complexity, at least
temporarily. Many thanks to Ted for writing and advising
on the necessary changes to the static analyzer.
I've xfailed a small diagnostics regression in the static
analyzer at Ted's request.
llvm-svn: 143867
expressions: expressions which refer to a logical rather
than a physical l-value, where the logical object is
actually accessed via custom getter/setter code.
A subsequent patch will generalize the AST for these
so that arbitrary "implementing" sub-expressions can
be provided.
Right now the only client is ObjC properties, but
this should be generalizable to similar language
features, e.g. Managed C++'s __property methods.
llvm-svn: 142914
the lifetime of the block by copying it to the heap, or else we'll get
a dangling reference because the code working with the non-block-typed
object will not know it needs to copy.
There is some danger here, e.g. with assigning a block literal to an
unsafe variable, but, well, it's an unsafe variable.
llvm-svn: 139451
than conversions of C pointers to ObjC pointers. In order to ensure that
we've caught every case, add asserts to CastExpr that strictly determine
which cast kind is used for which kind of bit cast.
llvm-svn: 139352
to represent a fully-substituted non-type template parameter.
This should improve source fidelity, as well as being generically
useful for diagnostics and such.
llvm-svn: 135243
where we have an immediate need of a retained value.
As an exception, don't do this when the call is made as the immediate
operand of a __bridge retain. This is more in the way of a workaround
than an actual guarantee, so it's acceptable to be brittle here.
rdar://problem/9504800
llvm-svn: 134605
class and to bind the shared value using OpaqueValueExpr. This fixes an
unnoticed problem with deserialization of these expressions where the
deserialized form would lose the vital pointer-equality trait; or rather,
it fixes it because this patch also does the right thing for deserializing
OVEs.
Change OVEs to not be a "temporary object" in the sense that copy elision is
permitted.
This new representation is not totally unawkward to work with, but I think
that's really part and parcel with the semantics we're modelling here. In
particular, it's much easier to fix things like the copy elision bug and to
make the CFG look right.
I've tried to update the analyzer to deal with this in at least some
obvious cases, and I think we get a much better CFG out, but the printing
of OpaqueValueExprs probably needs some work.
llvm-svn: 125744
I'm separately committing this because it incidentally changes some
block orderings and minor IR issues, like using a phi instead of
an unnecessary alloca.
llvm-svn: 124277
the LHS, or else the pointer might be invalid. This is kindof dumb, but
go ahead and make sure we're doing that for l-value scalar assignment,
which fixes a miscompile of obj-c++.dg/block-seq.mm.
Leave a FIXME for how to solve this problem for agg __blocks.
llvm-svn: 120992
Fix a bug in the emission of complex compound assignment l-values.
Introduce a method to emit an expression whose value isn't relevant.
Make that method evaluate its operand as an l-value if it is one.
Fixes our volatile compliance in C++.
llvm-svn: 120931
not actually frequently used, because ImpCastExprToType only creates a node
if the types differ. So explicitly create an ICE in the lvalue-to-rvalue
conversion code in DefaultFunctionArrayLvalueConversion() as well as several
other new places, and consistently deal with the consequences throughout the
compiler.
In addition, introduce a new cast kind for loading an ObjCProperty l-value,
and make sure we emit those nodes whenever an ObjCProperty l-value appears
that's not on the LHS of an assignment operator.
This breaks a couple of rewriter tests, which I've x-failed until future
development occurs on the rewriter.
Ted Kremenek kindly contributed the analyzer workarounds in this patch.
llvm-svn: 120890
assignment to volatiles in C. This in effect reverts some of mjs's
work in and around r72572. Basically, the C++ standard is quite
clear, except that it lies about volatile behavior approximating
C's, whereas the C standard is almost actively misleading.
llvm-svn: 119344
Return the result of a complex assignment with the original values,
not by performing a load from the l-value; this is the correct
semantics in C, although not in C++.
llvm-svn: 119037
implicit conversions; the last batch was specific to promotions.
I think this is the full set we need. I do think dividing the cast
kinds into floating and integral is probably a good idea.
Annotate a *lot* more C casts with useful cast kinds.
llvm-svn: 119036
(e.g., a call, cast, etc.), immediately adjust the expression's type
to strip cv-qualifiers off of all non-class types (in C++) or all
types (in C). This effectively extends my previous fix for PR7463,
which was restricted to calls, to other kinds of expressions within
similar characteristics. I've audited every use of
getNonReferenceType() in the code base, switching to the newly-renamed
getNonLValueExprType() where necessary.
Big thanks to Eli for pointing out just how incomplete my original fix
for PR7463 actually was. We've been handling cv-qualifiers on rvalues
wrong for a very, very long time. Fixes PR7463.
llvm-svn: 108253
complex values either. Previously we did this properly for regular assignment,
but not for compound assignment.
- Also, tidy up assignment code a bit to look more like the scalar path.
llvm-svn: 107217
Several of the existing methods were identical to their respective
specializations, and so have been removed entirely. Several more 'leaf'
optimizations were introduced.
The getAsFoo() methods which imposed extra conditions, like
getAsObjCInterfacePointerType(), have been left in place.
llvm-svn: 82501
LHS type and the computation result type; this encodes information into
the AST which is otherwise non-obvious. Fix Sema to always come up with the
right answer for both of these types. Fix IRGen and the analyzer to
account for these changes. This fixes PR2601. The approach is inspired
by PR2601 comment 2.
Note that this changes real *= complex in CodeGen from a silent
miscompilation to an explicit error.
I'm not really sure that the analyzer changes are correct, or how to
test them... someone more familiar with the analyzer should check those
changes.
llvm-svn: 67889
represents an implicit value-initialization of a subobject of a
particular type. This replaces the (ab)use of CXXZeroValueInitExpr
within initializer lists for the "holes" that occur due to the use of
C99 designated initializers.
The new test case is currently XFAIL'd, because CodeGen's
ConstExprEmitter (in lib/CodeGen/CGExprConstant.cpp) needs to be
taught to value-initialize when it sees ImplicitValueInitExprs.
llvm-svn: 63317
- Use dotted notation for blocks related to a particular statement
type.
- Use .end for landing pads.
No functionality change in NDEBUG mode. :)
llvm-svn: 59210
- EmitStmt is no longer required to finish with a current insertion
point defined (i.e. it does not need to make dummy
blocks). Instead, it can clear the insertion point in the builder
which indicates that the current insertion point is unreachable.
- CodeGenFunction provides HaveInsertPoint and EnsureInsertPoint
which respectively test if there is an insert point and ensure an
insertion point exists (by making a dummy block).
- Clearly mark functions in CodeGenFunction which can be called with
no insertion point defined. Currently this is a limited set, and
EmitStmt simply EnsureInsertPoint()s before emitting subsequent IR.
Remove EmitDummyBlock, which is no longer needed. Clients who haven't
already cleared the insertion point (typically via EmitBranch) can do
so by hand.
Remove isDummyBlock, which has effectively been renamed to
HaveInsertPoint.
The main thrust of this change is that we no longer have create dummy
blocks just to destroy them a short time later in EmitBlock in the
common case that there is no unreachable code following something like
a goto.
Additionally, this means that we are not using the hokey condition in
isDummyBlock that a block without a name is a dummy block. Guess how
well that works when we never emit block names!
llvm-svn: 59089
- Change Obj-C runtime message API, drop the ObjCMessageExpr arg in
favor of just result type and selector. Necessary so it can be
reused in situations where we don't want to cons up an
ObjCMessageExpr.
- Update aggregate binary assignment to know about special property
ref lvalues.
- Add CodeGenFunction::EmitCallArg overload which takes an already
emitted rvalue.
Add CodeGenFunction::StoreComplexIntoAddr.
Disabled logic in Sema for parsing Objective-C dot-syntax that
accesses methods. This code does not search in the correct order and
the AST node has no way of properly representing its results.
Updated StmtDumper to print a bit more information about
ObjCPropertyRefExprs.
llvm-svn: 55561