into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
The later API is nicer than the former, and is correct regarding wrap-around offsets (if anyone cares).
There are a few more places left with duplicated code, which I'll remove soon.
llvm-svn: 171259
This was a silly oversight, we weren't pruning allocas which were used
by variable-length memory intrinsics from the set that could be widened
and promoted as integers. Fix that.
llvm-svn: 170353
This also cleans up a bit of the memcpy call rewriting by sinking some
irrelevant code further down and making the call-emitting code a bit
more concrete.
Previously, memcpy of a subvector would actually miscompile (!!!) the
copy into a single vector element copy. I have no idea how this ever
worked. =/ This is the memcpy half of PR14478 which we probably weren't
noticing previously because it didn't actually assert.
The rewrite relies on the newly refactored insert- and extractVector
functions to do the heavy lifting, and those are the same as used for
loads and stores which makes the test coverage a bit more meaningful
here.
llvm-svn: 170338
The first half of fixing this bug was actually in r170328, but was
entirely coincidental. It did however get me to realize the nature of
the bug, and adapt the test case to test more interesting behavior. In
turn, that uncovered the rest of the bug which I've fixed here.
This should fix two new asserts that showed up in the vectorize nightly
tester.
llvm-svn: 170333
I noticed this while looking at r170328. We only ever do a vector
rewrite when the alloca *is* the vector type, so it's good to not paper
over bugs here by doing a convertValue that isn't needed.
llvm-svn: 170331
This will allow its use inside of memcpy rewriting as well. This routine
is more complex than extractVector, and some of its uses are not 100%
where I want them to be so there is still some work to do here.
While this can technically change the output in some cases, it shouldn't
be a change that matters -- IE, it can leave some dead code lying around
that prior versions did not, etc.
Yet another step in the refactorings leading up to the solution to the
last component of PR14478.
llvm-svn: 170328
The method helpers all implicitly act upon the alloca, and what we
really want is a fully generic helper. Doing memcpy rewrites is more
special than all other rewrites because we are at times rewriting
instructions which touch pointers *other* than the alloca. As
a consequence all of the helpers needed by memcpy rewriting of
sub-vector copies will need to be generalized fully.
Note that all of these helpers ({insert,extract}{Integer,Vector}) are
woefully uncommented. I'm going to go back through and document them
once I get the factoring correct.
No functionality changed.
llvm-svn: 170325
PR14478 highlights a serious problem in SROA that simply wasn't being
exercised due to a lack of vector input code mixed with C-library
function calls. Part of SROA was written carefully to handle subvector
accesses via memset and memcpy, but the rewriter never grew support for
this. Fixing it required refactoring the subvector access code in other
parts of SROA so it could be shared, and then fixing the splat formation
logic and using subvector insertion (this patch).
The PR isn't quite fixed yet, as memcpy is still broken in the same way.
I'm starting on that series of patches now.
Hopefully this will be enough to bring the bullet benchmark back to life
with the bb-vectorizer enabled, but that may require fixing memcpy as
well.
llvm-svn: 170301
No functionality changed. Refactoring leading up to the fix for PR14478
which requires some significant changes to the memset and memcpy
rewriting.
llvm-svn: 170299
This visitor provides infrastructure for recursively traversing the
use-graph of a pointer-producing instruction like an alloca or a malloc.
It maintains a worklist of uses to visit, so it can handle very deep
recursions. It automatically looks through instructions which simply
translate one pointer to another (bitcasts and GEPs). It tracks the
offset relative to the original pointer as long as that offset remains
constant and exposes it during the visit as an APInt offset. Finally, it
performs conservative escape analysis.
However, currently it has some limitations that should be addressed
going forward:
1) It doesn't handle vectors of pointers.
2) It doesn't provide a cheaper visitor when the constant offset
tracking isn't needed.
3) It doesn't support non-instruction pointer values.
The current functionality is exactly what is required to implement the
SROA pointer-use visitors in terms of this one, rather than in terms of
their own ad-hoc base visitor, which was always very poorly specified.
SROA has been converted to use this, and the code there deleted which
this utility now provides.
Technically speaking, using this new visitor allows SROA to handle a few
more cases than it previously did. It is now more aggressive in ignoring
chains of instructions which look like they would defeat SROA, but in
fact do not because they never result in a read or write of memory.
While this is "neat", it shouldn't be interesting for real programs as
any such chains should have been removed by others passes long before we
get to SROA. As a consequence, I've not added any tests for these
features -- it shouldn't be part of SROA's contract to perform such
heroics.
The goal is to extend the functionality of this visitor going forward,
and re-use it from passes like ASan that can benefit from doing
a detailed walk of the uses of a pointer.
Thanks to Ben Kramer for the code review rounds and lots of help
reviewing and debugging this patch.
llvm-svn: 169728
When SROA was evaluating a mixture of i1 and i8 loads and stores, in
just a particular case, it would tickle a latent bug where we compared
bits to bytes rather than bits to bits. As a consequence of the latent
bug, we would allow integers through which were not byte-size multiples,
a situation the later rewriting code was never intended to handle.
In release builds this could trigger all manner of oddities, but the
reported issue in PR14548 was forming invalid bitcast instructions.
The only downside of this fix is that it makes it more clear that SROA
in its current form is not capable of handling mixed i1 and i8 loads and
stores. Sometimes with the previous code this would work by luck, but
usually it would crash, so I'm not terribly worried. I'll watch the LNT
numbers just to be sure.
llvm-svn: 169719
This will more closely match the behavior of the new PtrUseVisitor that
I am adding. Hopefully this will not change the actual behavior in any
way, but by making the processing order more similar help in debugging.
llvm-svn: 169697
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
The partitioning logic attempted to handle uses of an alloca with an
offset starting before the alloca so long as the use had some overlap
with the alloca itself. However, there was a bug where we tested
'(uint64_t)Offset >= AllocSize' without first checking whether 'Offset'
was positive. As a consequence, essentially every negative offset (that
is, starting *before* the alloca does) would be thrown out, even if it
was overlapping. The subsequent code to throw out negative offsets which
were actually non-overlapping was essentially dead. The code to *handle*
overlapping negative offsets was actually dead!
I've just removed all of this, and taught SROA to discard any uses which
start prior to the alloca from the beginning. It has the lovely property
of simplifying the code. =] All the tests still pass, and in fact no new
tests are needed as this is already covered by our testsuite. Fixing the
code so that negative offsets work the way the comments indicate they
were supposed to work causes regressions. That's how I found this.
Anyways, this is all progress in the correct direction -- tightening up
SROA to be maximally aggressive. Some day, I really hope to turn
out-of-bounds accesses to an alloca into 'unreachable'.
llvm-svn: 169120
depends on the IR infrastructure, there is no sense in it being off in
Support land.
This is in preparation to start working to expand InstVisitor into more
special-purpose visitors that are still generic and can be re-used
across different passes. The expansion will go into the Analylis tree
though as nothing in VMCore needs it.
llvm-svn: 168972
Now if we can transform an alloca into a single vector value, but it has
subvector, non-element accesses, we form the appropriate shufflevectors
to allow SROA to proceed. This fixes PR14055 which pointed out a very
common pattern that SROA couldn't handle -- mixed vec3 and vec4
operations on a single alloca.
llvm-svn: 168418
The issue is that we may end up with newly OOB loads when speculating
a load into the predecessors of a PHI node, and this confuses the new
integer splitting logic in some cases, triggering an assertion failure.
In fact, the branch in question must be dead code as it loads from
a too-narrow alloca. Add code to handle this gracefully and leave the
requisite FIXMEs for both optimizing more aggressively and doing more to
aid sanitizing invalid code which triggers these patterns.
llvm-svn: 168361
to properly handle the combinations of these with split integer loads
and stores. This essentially replaces Evan's r168227 by refactoring the
code in a different way, and trynig to mirror that refactoring in both
the load and store sides of the rewriting.
Generally speaking there was some really problematic duplicated code
here that led to poorly founded assumptions and then subtle bugs. Now
much of the code actually flows through and follows a more consistent
style and logical path. There is still a tiny bit of duplication on the
store side of things, but it is much less bad.
This also changes the logic to never re-use a load or store instruction
as that was simply too error prone in practice.
I've added a few tests (one a reduction of the one in Evan's original
patch, which happened to be the same as the report in PR14349). I'm
going to look at adding a few more tests for things I found and fixed in
passing (such as the volatile tests in the vectorizable predicate).
This patch has survived bootstrap, and modulo one bugfix survived
Duncan's test suite, but let me know if anything else explodes.
llvm-svn: 168346
r165941: Resubmit the changes to llvm core to update the functions to
support different pointer sizes on a per address space basis.
Despite this commit log, this change primarily changed stuff outside of
VMCore, and those changes do not carry any tests for correctness (or
even plausibility), and we have consistently found questionable or flat
out incorrect cases in these changes. Most of them are probably correct,
but we need to devise a system that makes it more clear when we have
handled the address space concerns correctly, and ideally each pass that
gets updated would receive an accompanying test case that exercises that
pass specificaly w.r.t. alternate address spaces.
However, from this commit, I have retained the new C API entry points.
Those were an orthogonal change that probably should have been split
apart, but they seem entirely good.
In several places the changes were very obvious cleanups with no actual
multiple address space code added; these I have not reverted when
I spotted them.
In a few other places there were merge conflicts due to a cleaner
solution being implemented later, often not using address spaces at all.
In those cases, I've preserved the new code which isn't address space
dependent.
This is part of my ongoing effort to clean out the partial address space
code which carries high risk and low test coverage, and not likely to be
finished before the 3.2 release looms closer. Duncan and I would both
like to see the above issues addressed before we return to these
changes.
llvm-svn: 167222
getIntPtrType support for multiple address spaces via a pointer type,
and also introduced a crasher bug in the constant folder reported in
PR14233.
These commits also contained several problems that should really be
addressed before they are re-committed. I have avoided reverting various
cleanups to the DataLayout APIs that are reasonable to have moving
forward in order to reduce the amount of churn, and minimize the number
of commits that were reverted. I've also manually updated merge
conflicts and manually arranged for the getIntPtrType function to stay
in DataLayout and to be defined in a plausible way after this revert.
Thanks to Duncan for working through this exact strategy with me, and
Nick Lewycky for tracking down the really annoying crasher this
triggered. (Test case to follow in its own commit.)
After discussing with Duncan extensively, and based on a note from
Micah, I'm going to continue to back out some more of the more
problematic patches in this series in order to ensure we go into the
LLVM 3.2 branch with a reasonable story here. I'll send a note to
llvmdev explaining what's going on and why.
Summary of reverted revisions:
r166634: Fix a compiler warning with an unused variable.
r166607: Add some cleanup to the DataLayout changes requested by
Chandler.
r166596: Revert "Back out r166591, not sure why this made it through
since I cancelled the command. Bleh, sorry about this!
r166591: Delete a directory that wasn't supposed to be checked in yet.
r166578: Add in support for getIntPtrType to get the pointer type based
on the address space.
llvm-svn: 167221
integers in that the code to handle split alloca-wide integer loads or
stores doesn't come first. It should, for the same reasons as with
integers, and the PR attests to that. Also had to fix a busted assert in
that this test case also covers.
llvm-svn: 167051
smaller integer loads and stores.
The high-level motivation is that the frontend sometimes generates
a single whole-alloca integer load or store during ABI lowering of
splittable allocas. We need to be able to break this apart in order to
see the underlying elements and properly promote them to SSA values. The
hope is that this fixes some performance regressions on x86-32 with the
new SROA pass.
Unfortunately, this causes quite a bit of churn in the test cases, and
bloats some IR that comes out. When we see an alloca that consists soley
of bits and bytes being extracted and re-inserted, we now do some
splitting first, before building widened integer "bucket of bits"
representations. These are always well folded by instcombine however, so
this shouldn't actually result in missed opportunities.
If this splitting of all-integer allocas does cause problems (perhaps
due to smaller SSA values going into the RA), we could potentially go to
some extreme measures to only do this integer splitting trick when there
are non-integer component accesses of an alloca, but discovering this is
quite expensive: it adds yet another complete walk of the recursive use
tree of the alloca.
Either way, I will be watching build bots and LNT bots to see what
fallout there is here. If anyone gets x86-32 numbers before & after this
change, I would be very interested.
llvm-svn: 166662
operate purely on values. Sink the alloca loading and storing logic into
the rewrite routines that are specific to alloca-integer-rewrite
driving. This is just a refactoring here, but the subsequent step will
be to reuse the insertion and extraction logic when rewriting integer
loads and stores that have been split and decomposed into narrower loads
and stores.
No functionality changed other than different names for instructions.
llvm-svn: 166176
a pointer. A very bad idea. Let's not do that. Fixes PR14105.
Note that this wasn't *that* glaring of an oversight. Originally, these
routines were only called on offsets within an alloca, which are
intrinsically positive. But over the evolution of the pass, they ended
up being called for arbitrary offsets, and things went downhill...
llvm-svn: 166095
revision makes no sense. We cannot use the address space of the *post
indexed* type to conclude anything about a *pre indexed* pointer type's
size. More importantly, this index can never be over a pointer. We are
indexing over arrays and vectors here.
Of course, I have no test case here. Neither did the original patch. =/
llvm-svn: 166091