This prevents the behavior observed in llvm.org/PR22369. I am not sure
whether I am reading the code correctly, but the early exit based on
isLiveOutPastPHIs() seems to make the wrong assumption that
RegisterCoalescer won't be able to coalesce those copies later.
This change hides the new behavior behind -no-phi-elim-live-out-early-exit
as it currently breaks four tests:
* Assertion in:
CodeGen/Hexagon/hwloop-cleanup.ll
* Worse code in:
CodeGen/X86/coalescer-commute4.ll
CodeGen/X86/phys_subreg_coalesce-2.ll
CodeGen/X86/zlib-longest-match.ll
The root cause here seems to be that the heuristic that determines
the visitation order in RegisterCoalescer gets less lucky.
llvm-svn: 231064
This lets us avoid a few copies that are otherwise hard to get rid of.
The way this is done is, the custom-inserter looks at the following
instruction for another CMOV, and replaces both at the same time.
A previous version used a new CMOV2 opcode, but the custom inserter
is expected to be able to return a different basic block anyway, which
means it's OK - though far from ideal - to alter that block's contents.
Explicitly document that, in case it ever makes a difference.
Alternatives welcome!
Follow-up to r231045.
rdar://19767934
Closes http://reviews.llvm.org/D8019
llvm-svn: 231046
Fold and/or of setcc's to double CMOV:
(CMOV F, T, ((cc1 | cc2) != 0)) -> (CMOV (CMOV F, T, cc1), T, cc2)
(CMOV F, T, ((cc1 & cc2) != 0)) -> (CMOV (CMOV T, F, !cc1), F, !cc2)
When we can't use the CMOV instruction, it might increase branch
mispredicts. When we can, or when there is no mispredict, this
improves throughput and reduces register pressure.
These can't be catched by generic combines, because the pattern can
appear when legalizing some instructions (such as fcmp une).
rdar://19767934
http://reviews.llvm.org/D7634
llvm-svn: 231045
By loading from indexed offsets into a byte array and applying a mask, a
program can test bits from the bit set with a relatively short instruction
sequence. For example, suppose we have 15 bit sets to lay out:
A (16 bits), B (15 bits), C (14 bits), D (13 bits), E (12 bits),
F (11 bits), G (10 bits), H (9 bits), I (7 bits), J (6 bits), K (5 bits),
L (4 bits), M (3 bits), N (2 bits), O (1 bit)
These bits can be laid out in a 16-byte array like this:
Byte Offset
0123456789ABCDEF
Bit
7 HHHHHHHHHIIIIIII
6 GGGGGGGGGGJJJJJJ
5 FFFFFFFFFFFKKKKK
4 EEEEEEEEEEEELLLL
3 DDDDDDDDDDDDDMMM
2 CCCCCCCCCCCCCCNN
1 BBBBBBBBBBBBBBBO
0 AAAAAAAAAAAAAAAA
For example, to test bit X of A, we evaluate ((bits[X] & 1) != 0), or to
test bit X of I, we evaluate ((bits[9 + X] & 0x80) != 0). This can be done
in 1-2 machine instructions on x86, or 4-6 instructions on ARM.
This uses the LPT multiprocessor scheduling algorithm to lay out the bits
efficiently.
Saves ~450KB of instructions in a recent build of Chromium.
Differential Revision: http://reviews.llvm.org/D7954
llvm-svn: 231043
There's really no reason to have them have entries in the symbol table
anymore. Old versions of ld64 had some bugs in this area but those have
been fixed long ago.
llvm-svn: 231041
In the future, we should run the output of clang through instnamer to
make it easier to manually edit test cases.
No functionality change.
llvm-svn: 231037
TargetRegisterInfo. DebugLocEntry now holds a buffer with the raw bytes
of the pre-calculated DWARF expression.
Ought to be NFC, but it does slightly alter the output format of the
textual assembly.
This reapplies 230930 without the assertion in DebugLocEntry::finalize()
because not all Machine registers can be lowered into DWARF register
numbers and floating point constants cannot be expressed.
llvm-svn: 231023
This re-lands change r230921. r230921 was reverted because it broke a
clang test; a checkin fixing the clang test will be commited shortly.
Summary:
As far as I can tell, the real bug causing the issue was fixed in
r230533. SCEVExpander should mark an increment operation as nuw or nsw
only if it can *prove* that the operation does not overflow. There
shouldn't be any situation where we have to do something different
because of no-wrap flags generated by SCEVExpander.
Revert "IndVarSimplify: Allow LFTR to fire more often"
This reverts commit 1ade0f0faa98877b688e0b9da58e876052c1e04e (SVN: 222213).
Revert "IndVarSimplify: Don't let LFTR compare against a poison value"
This reverts commit c0f2b8b528d8a37b0a1522aae90af649d6357eb5 (SVN: 217102).
Reviewers: majnemer, atrick, spatel
Differential Revision: http://reviews.llvm.org/D7979
llvm-svn: 231018
The internal shell was already threading around a 'cwd' parameter. We
just have to make it mutable so that we can update it as the test script
executes.
If the shell ever grows support for environment variable substitution,
we could also implement support for export.
llvm-svn: 231017
The issue is that now we have a diag handler during optimizations
and get forward every optimization remark, flooding stdout.
The same filtering should probably be done with or without a
custom handler, but for now just ignore remarks.
Original message:
gold-plugin: "Upgrade" debug info and handle its warnings.
The gold plugin never calls MaterializeModule, so any old debug info
was not deleted and could cause crashes.
Now that it is being "upgraded", the plugin also has to handle warnings
and create Modules with a nice id (it shows in the warning).
llvm-svn: 230991
TargetRegisterInfo. DebugLocEntry now holds a buffer with the raw bytes
of the pre-calculated DWARF expression.
Ought to be NFC, but it does slightly alter the output format of the
textual assembly.
This reapplies 230930 with a relaxed assertion in DebugLocEntry::finalize()
that allows for empty DWARF expressions for constant FP values.
llvm-svn: 230975
Summary:
When the RHS of a conditional move node is zero, we can utilize the $zero
register by inverting the conditional move instruction and by swapping the
order of its True/False operands.
Reviewers: dsanders
Differential Revision: http://reviews.llvm.org/D7945
llvm-svn: 230956
Previously this would result in assertion failures or simply crashes
at various points in the optimizer when trying to create types of zero
bit width.
llvm-svn: 230936
A short list of some of the improvements:
1) Now supports -all command line argument, which implies many
other command line arguments to simplify usage.
2) Now supports -no-compiler-generated command line argument to
exclude compiler generated types.
3) Prints base class list.
4) -class-definitions implies -types.
5) Proper display of bitfields.
6) Can now distinguish between struct/class/interface/union.
And a few other minor tweaks.
llvm-svn: 230933
TargetRegisterInfo. DebugLocEntry now holds a buffer with the raw bytes
of the pre-calculated DWARF expression.
Ought to be NFC, but it does slightly alter the output format of the
textual assembly.
llvm-svn: 230930
Summary:
As far as I can tell, the real bug causing the issue was fixed in
r230533. SCEVExpander should mark an increment operation as nuw or nsw
only if it can *prove* that the operation does not overflow. There
shouldn't be any situation where we have to do something different
because of no-wrap flags generated by SCEVExpander.
Revert "IndVarSimplify: Allow LFTR to fire more often"
This reverts commit 1ade0f0faa98877b688e0b9da58e876052c1e04e (SVN: 222213).
Revert "IndVarSimplify: Don't let LFTR compare against a poison value"
This reverts commit c0f2b8b528d8a37b0a1522aae90af649d6357eb5 (SVN: 217102).
Reviewers: majnemer, atrick, spatel
Differential Revision: http://reviews.llvm.org/D7979
llvm-svn: 230921
We were missing a check for the following fold in DAGCombiner:
// fold (fmul (fmul x, c1), c2) -> (fmul x, (fmul c1, c2))
If 'x' is also a constant, then we shouldn't do anything. Otherwise, we could end up swapping the operands back and forth forever.
This should fix:
http://llvm.org/bugs/show_bug.cgi?id=22698
Differential Revision: http://reviews.llvm.org/D7917
llvm-svn: 230884
r228631 stopped using `DW_OP_piece` inside `DIExpression`s in the IR,
but it apparently missed updating these testcases. Caught by verifier
checks for `MDExpression` while working on moving the new hierarchy into
place.
llvm-svn: 230882
There are two types of files in the old (current) debug info schema.
!0 = !{!"some/filename", !"/path/to/dir"}
!1 = !{!"0x29", !0} ; [ DW_TAG_file_type ]
!1 has a wrapper class called `DIFile` which inherits from `DIScope` and
is referenced in 'scope' fields.
!0 is called a "file node", and debug info nodes with a 'file' field
point at one of these directly -- although they're built in `DIBuilder`
by sending in a `DIFile` and reaching into it.
In the new hierarchy, I unified these nodes as `MDFile` (which `DIFile`
is a lightweight wrapper for) in r230057. Moving the new hierarchy into
place (and upgrading testcases) caused CodeGen/X86/unknown-location.ll
to start failing -- apparently "0x29" was previously showing up in the
linetable as a filename, causing:
.loc 2 4 3
(where 2 points at filename "0x29") instead of:
.loc 1 4 3
(where 1 points at the actual filename).
Change the testcase to use the old schema correctly.
llvm-svn: 230880
While gaining practical experience hand-updating CHECK lines (for moving
the new debug info hierarchy into place), I learnt a few things about
CHECK-ability of the specialized node assembly output.
- The first part of a `CHECK:` is to identify the "right" node (this
is especially true if you intend to use the new `CHECK-SAME`
feature, since the first CHECK needs to identify the node correctly
before you can split the line).
- If there's a `tag:`, it should go first.
- If there's a `name:`, it should go next (followed by the
`linkageName:`, if any).
- If there's a `scope:`, it should follow after that.
- When a node type supports multiple DW_TAGs, but one is implied by
its name and is overwhelmingly more common, the `tag:` field is
terribly uninteresting unless it's different.
- `MDBasicType` is almost always `DW_TAG_base_type`.
- `MDTemplateValueParameter` is almost always
`DW_TAG_template_value_parameter`.
- Printing `name: ""` doesn't improve CHECK-ability, and there are far
more nodes than I realized that are commonly nameless.
- There are a few other fields that similarly aren't very interesting
when they're empty.
This commit updates the `AsmWriter` as suggested above (and makes
necessary changes in `LLParser` for round-tripping).
llvm-svn: 230877
Properly escape string fields in metadata. I've added a spot-check with
direct coverage for `MDFile::getFilename()`, but we'll get more coverage
once the hierarchy is moved into place (since this comes up in various
checked-in testcases).
I've replicated the `if` logic using the `ShouldSkipEmpty` flag
(although a follow-up commit is going to change how often this flag is
specified); no NFCI other than escaping the string fields.
llvm-svn: 230875
Leaving empty blocks around just opens up a can of bugs like PR22704. Deleting
them early also slightly simplifies code.
Thanks to Sanjay for the IR test case.
llvm-svn: 230856
It turns out the naming of inserted phis and selects is sensative to the order in which two sets are iterated. We need to nail this down to avoid non-deterministic output and possible test failures.
The modified test is the one I first noticed something odd in. The change is making it more strict to report the error. With the test change, but without the code change, the test fails roughly 1 in 5. With the code change, I've run ~30 runs without error.
Long term, the right fix here is to adjust the naming scheme. I'm checking in this hack to avoid any possible non-determinism in the tests over the weekend. HJust because I only noticed one case doesn't mean it's actually the only case. I hope to get to the right change Monday.
std->llvm data structure changes bugfix change #3
llvm-svn: 230835
This class is responsible for getting the linked data to the
disk in the appropriate form. Today it it an empty shell that
just instantiates an MC layer.
As we do not put anything in the resulting file yet, we just
check it has the right architecture (and check that -o does
the right thing).
To be able to create all the components, this commit adds a
few dependencies to llvm-dsymutil, namely all-targets, MC and
AsmPrinter.
Also add a -no-output option, so that tests that do not need
the binary result can continue to run even if they do not have
the required target linked in.
llvm-svn: 230824
These tests cover the 'base object' identification and rewritting portion of RewriteStatepointsForGC. These aren't completely exhaustive, but they've proven to be reasonable effective over time at finding regressions.
In the process of porting these tests over, I found my first "cleanup per llvm code style standards" bug. We were relying on the order of iteration when testing the base pointers found for a derived pointer. When we switched from std::set to DenseSet, this stopped being a safe assumption. I'm suspecting I'm going to find more of those. In particular, I'm now really wondering about the main iteration loop for this algorithm. I need to go take a closer look at the assumptions there.
I'm not really happy with the fact these are testing what is essentially debug output (i.e. enabled via command line flags). Suggestions for how to structure this better are very welcome.
llvm-svn: 230818
Straightforward patch to emit an alignment directive when emitting a
TOC entry. The test case was generated from the test in PR22711 that
demonstrated a misaligned .toc section. The object code is run
through llvm-readobj to verify that the correct alignment has been
applied to the .toc section.
Thanks to Ulrich Weigand for running down where the fix was needed.
llvm-svn: 230801
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
Summary:
Until now, we did this (among other things) based on whether or not the
target was Windows. This is clearly wrong, not just for Win64 ABI functions
on non-Windows, but for System V ABI functions on Windows, too. In this
change, we make this decision based on the ABI the calling convention
specifies instead.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7953
llvm-svn: 230793
When using Altivec, we can use vector loads and stores for aligned memcpy and
friends. Starting with the P7 and VXS, we have reasonable unaligned vector
stores. Starting with the P8, we have fast unaligned loads too.
For QPX, we use vector loads are stores, but only for aligned memory accesses.
llvm-svn: 230788
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
This work is currently being rethought along different lines and
if this work is needed it can be resurrected out of svn. Remove it
for now as no current work in ongoing on it and it's unused. Verified
with the authors before removal.
llvm-svn: 230780
In the review for r230567, it was pointed out we should really test
the lib/Object part of that change. This does so using llvm-readobj.
llvm-svn: 230779
Summary:
Currently fast-isel-abort will only abort for regular instructions,
and just warn for function calls, terminators, function arguments.
There is already fast-isel-abort-args but nothing for calls and
terminators.
This change turns the fast-isel-abort options into an integer option,
so that multiple levels of strictness can be defined.
This will help no being surprised when the "abort" option indeed does
not abort, and enables the possibility to write test that verifies
that no intrinsics are forgotten by fast-isel.
Reviewers: resistor, echristo
Subscribers: jfb, llvm-commits
Differential Revision: http://reviews.llvm.org/D7941
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 230775
This removes a bit of duplicated code and more importantly, remembers the
labels so that they don't need to be looked up by name.
This in turn allows for any name to be used and avoids a crash if the name
we wanted was already taken.
llvm-svn: 230772
Not passing mtriple for one of the tests caused a regression failure
on MIPS buildbot. The issue was introduced by r230651.
Differential Revision: http://reviews.llvm.org/D7938
llvm-svn: 230756
vectors. This lets us fix the rest of the v16 lowering problems when
pshufb is clearly better.
We might still be able to improve some of the lowerings by enabling the
other combine-based rewriting to fire for non-128-bit vectors, but this
at least should remove any regressions from using the fancy v16i16
lowering strategy.
llvm-svn: 230753
repeated 128-bit lane shuffles of wider vector types and use it to lower
256-bit v16i16 vector shuffles where applicable.
This should let us perfectly lowering the pattern of pshuflw and pshufhw
even for AVX2 256-bit patterns.
I've not added AVX-512 support, but it should be trivial for someone
working on that to wire up.
Note that currently this generates bad, long shuffle chains because we
don't combine 256-bit target shuffles. The subsequent patches will fix
that.
llvm-svn: 230751
by mirroring v8i16 test cases across both 128-bit lanes. This should
highlight problems where we aren't correctly using 128-bit shuffles to
implement things.
llvm-svn: 230750
Summary:
We identify the cases where the operand to an ADDE node is a constant
zero. In such cases, we can avoid generating an extra ADDu instruction
disguised as an identity move alias (ie. addu $r, $r, 0 --> move $r, $r).
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7906
llvm-svn: 230742
Currently, the ASan executables built with -O0 are unnecessarily slow.
The main reason is that ASan instrumentation pass inserts redundant
checks around promotable allocas. These allocas do not get instrumented
under -O1 because they get converted to virtual registered by mem2reg.
With this patch, ASan instrumentation pass will only instrument non
promotable allocas, giving us a speedup of 39% on a collection of
benchmarks with -O0. (There is no measurable speedup at -O1.)
llvm-svn: 230724
Summary:
This change causes us to actually save non-volatile registers in a Win64
ABI function that calls a System V ABI function, and vice-versa.
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7919
llvm-svn: 230714
Function pointers were not correctly handled by the dumper, and
they would print as "* name". They now print as
"int (__cdecl *name)(int arg1, int arg2)" as they should.
Also, doubles were being printed as floats. This fixes that bug
as well, and adds tests for all builtin types. as well as a test
for function pointers.
llvm-svn: 230703
blend as legal.
We made the same mistake in two different places. Whenever we are custom
lowering a v32i8 blend we need to check whether we are custom lowering
it only for constant conditions that can be shuffled, or whether we
actually have AVX2 and full dynamic blending support on bytes. Both are
fixed, with comments added to make it clear what is going on and a new
test case.
llvm-svn: 230695
On 32bits x86 Darwin, the register mappings for the eh_frane and
debug_frame sections are different. Thus the same CFI instructions
should result in different registers in the object file. The
problem isn't target specific though, but it requires that the
mappings for EH register numbers be different from the standard
Dwarf one.
The patch looks a bit clumsy. LLVM uses the EH mapping as
canonical for everything frame related. Thus we need to do a
double conversion EH -> LLVM -> Non-EH, when emitting the
debug_frame section.
Fixes PR22363.
Differential Revision: http://reviews.llvm.org/D7593
llvm-svn: 230670
InstCombine has long had logic to convert aligned Altivec load/store intrinsics
into regular loads and stores. This mirrors that functionality for QPX vector
load/store intrinsics.
llvm-svn: 230660
have the debugger step through each one individually. Turn off the
combine for adjacent stores at -O0 so we get this behavior.
Possibly, DAGCombine shouldn't run at all at -O0, but that's for
another day; see PR22346.
Differential Revision: http://reviews.llvm.org/D7181
llvm-svn: 230659
There was a problem when passing structures as variable arguments.
The structures smaller than 64 bit were not left justified on MIPS64
big endian. This is now fixed by shifting the value to make it left-
justified when appropriate.
This fixes the bug http://llvm.org/bugs/show_bug.cgi?id=21608
Patch by Aleksandar Beserminji.
Differential Revision: http://reviews.llvm.org/D7881
llvm-svn: 230657
The gold plugin never calls MaterializeModule, so any old debug info
was not deleted and could cause crashes.
Now that it is being "upgraded", the plugin also has to handle warnings
and create Modules with a nice id (it shows in the warning).
llvm-svn: 230655
In case of "krait" CPU, asm printer doesn't emit any ".cpu" so the
features bits are not computed. This patch lets the asm printer
emit ".cpu cortex-a9" directive for krait and the hwdiv feature is
enabled through ".arch_extension". In short, krait is treated
as "cortex-a9" with hwdiv. We can not emit ".krait" as CPU since
it is not supported bu GNU GAS yet
llvm-svn: 230651
accesses are via different types
Noticed this while generalizing the code for loop distribution.
I confirmed with Arnold that this was indeed a bug and managed to create
a testcase.
llvm-svn: 230647
Turns out that after the past MMX commits, we don't need to rely on this
flag to get better codegen for MMX. Also update the tests to become
triple neutral.
llvm-svn: 230637
InstCombine has logic to convert aligned Altivec load/store intrinsics into
regular loads and stores. Unfortunately, there seems to be no regression test
covering this behavior. Adding one...
llvm-svn: 230632
Add `CHECK-SAME`, which requires that the pattern matches on the *same*
line as the previous `CHECK`/`CHECK-NEXT` -- in other words, no newline
is allowed in the skipped region. This is similar to `CHECK-NEXT`,
which requires exactly 1 newline in the skipped region.
My motivation is to simplify checking the long lines of LLVM assembly
for the new debug info hierarchy. This allows CHECK sequences like the
following:
CHECK: ![[REF]] = !SomeMDNode(
CHECK-SAME: file: ![[FILE:[0-9]+]]
CHECK-SAME: otherField: 93{{[,)]}}
which is equivalent to:
CHECK: ![[REF]] = !SomeMDNode({{.*}}file: ![[FILE:[0-9]+]]{{.*}}otherField: 93{{[,)]}}
While this example just has two fields, many nodes in debug info have
more than that. `CHECK-SAME` will keep the logic easy to follow.
Morever, it enables interleaving `CHECK-NOT`s without allowing newlines.
Consider the following:
CHECK: ![[REF]] = !SomeMDNode(
CHECK-SAME: file: ![[FILE:[0-9]+]]
CHECK-NOT: unexpectedField:
CHECK-SAME: otherField: 93{{[,)]}}
CHECK-NOT: otherUnexpectedField:
CHECK-SAME: )
which doesn't seem to have an equivalent `CHECK` line.
llvm-svn: 230612
Use the IRBuilder helpers for gc.statepoint and gc.result, instead of
coding the construction by hand. Note that the gc.statepoint IRBuilder
handles only CallInst, not InvokeInst; retain that part of hand-coding.
Differential Revision: http://reviews.llvm.org/D7518
llvm-svn: 230591
This symbol exists only to pull in the required pieces of the runtime,
so nothing ever needs to refer to it. Making it hidden avoids the
potential for issues with duplicate symbols when linking profiled
libraries together.
llvm-svn: 230566
This is a follow-on to r227491 which tightens the check for propagating FP
values. If a non-constant value happens to be a zero, we would hit the same
bug as before.
Bug noted and patch suggested by Eli Friedman.
llvm-svn: 230564
Summary: SROA generates code that isn't quite as easy to optimize and contains unusual-sized shuffles, but that code is generally correct. As discussed in D7487 the right place to clean things up is InstCombine, which will pick up the type-punning pattern and transform it into a more obvious bitcast+extractelement, while leaving the other patterns SROA encounters as-is.
Test Plan: make check
Reviewers: jvoung, chandlerc
Subscribers: llvm-commits
llvm-svn: 230560
LDtocL, and other loads that roughly correspond to the TOC_ENTRY SDAG node,
represent loads from the TOC, which is invariant. As a result, these loads can
be hoisted out of loops, etc. In order to do this, we need to generate
GOT-style MMOs for TOC_ENTRY, which requires treating it as a legitimate memory
intrinsic node type. Once this is done, the MMO transfer is automatically
handled for TableGen-driven instruction selection, and for nodes generated
directly in PPCISelDAGToDAG, we need to transfer the MMOs manually.
Also, we were not transferring MMOs associated with pre-increment loads, so do
that too.
Lastly, this fixes an exposed bug where R30 was not added as a defined operand of
UpdateGBR.
This problem was highlighted by an example (used to generate the test case)
posted to llvmdev by Francois Pichet.
llvm-svn: 230553
The Win64 epilogue structure is very restrictive, it permits a very
small number of opcodes and none of them are 'mov'.
This means that given:
mov %rbp, %rsp
pop %rbp
The mov isn't the epilogue, only the pop is. This is problematic unless
a frame pointer is present in which case we are free to do whatever we'd
like in the "body" of the function. If a frame pointer is present,
unwinding will undo the prologue operations in reverse order regardless
of the fact that we are at an instruction which is reseting the stack
pointer.
llvm-svn: 230543
This change aligns globals to the next highest power of 2 bytes, up to a
maximum of 128. This makes it more likely that we will be able to compress
bit sets with a greater alignment. In many more cases, we can now take
advantage of a new optimization also introduced in this patch that removes
bit set checks if the bit set is all ones.
The 128 byte maximum was found to provide the best tradeoff between instruction
overhead and data overhead in a recent build of Chromium. It allows us to
remove ~2.4MB of instructions at the cost of ~250KB of data.
Differential Revision: http://reviews.llvm.org/D7873
llvm-svn: 230540
(The change was landed in r230280 and caused the regression PR22674.
This version contains a fix and a test-case for PR22674).
When emitting the increment operation, SCEVExpander marks the
operation as nuw or nsw based on the flags on the preincrement SCEV.
This is incorrect because, for instance, it is possible that {-6,+,1}
is <nuw> while {-6,+,1}+1 = {-5,+,1} is not.
This change teaches SCEV to mark the increment as nuw/nsw only if it
can explicitly prove that the increment operation won't overflow.
Apart from the attached test case, another (more realistic)
manifestation of the bug can be seen in
Transforms/IndVarSimplify/pr20680.ll.
Differential Revision: http://reviews.llvm.org/D7778
llvm-svn: 230533
With a diabolically crafted test case, we could recurse
through this code and return true instead of false.
The larger engineering crime is the use of magic numbers.
Added FIXME comments for those.
llvm-svn: 230515
Reapply r230248.
Teach the peephole optimizer to work with MMX instructions by adding
entries into the foldable tables. This covers folding opportunities not
handled during isel.
llvm-svn: 230499
Thumb-1 only allows SP-based LDR and STR to be word-sized, and SP-base LDR,
STR, and ADD only allow offsets that are a multiple of 4. Make some changes
to better make use of these instructions:
* Use word loads for anyext byte and halfword loads from the stack.
* Enforce 4-byte alignment on objects accessed in this way, to ensure that
the offset is valid.
* Do the same for objects whose frame index is used, in order to avoid having
to use more than one ADD to generate the frame index.
* Correct how many bits of offset we think AddrModeT1_s has.
Patch by John Brawn.
llvm-svn: 230496
Summary:
This change fixes the FIXME that you recently added when you committed
(a modified version of) my patch. When `InstCombine` combines a load and
store of an pointer to those of an equivalently-sized integer, it currently
drops any `!nonnull` metadata that might be present. This change replaces
`!nonnull` metadata with `!range !{ 1, -1 }` metadata instead.
Reviewers: chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7621
llvm-svn: 230462
Since r199356, we've printed a warning when dropping debug info.
r225562 started crashing on that, since it registered a diagnostic
handler that only expected errors. This fixes the handler to expect
other severities. As a side effect, it now prints "error: " at the
start of error messages, similar to `llvm-as`.
There was a testcase for r199356, but it only really checked the
assembler. Move `test/Bitcode/drop-debug-info.ll` to `test/Assembler`,
and introduce `test/Bitcode/drop-debug-info.3.5.ll` (and companion
`.bc`) to test the bitcode reader.
Note: tools/gold/gold-plugin.cpp has an equivalent bug, but I'm not sure
what the best fix is there. I'll file a PR.
llvm-svn: 230416
Like r230414, add bitcode support including backwards compatibility, for
an explicit type parameter to GEP.
At the suggestion of Duncan I tried coalescing the two older bitcodes into a
single new bitcode, though I did hit a wrinkle: I couldn't figure out how to
create an explicit abbreviation for a record with a variable number of
arguments (the indicies to the gep). This means the discriminator between
inbounds and non-inbounds gep is a full variable-length field I believe? Is my
understanding correct? Is there a way to create such an abbreviation? Should I
just use two bitcodes as before?
Reviewers: dexonsmith
Differential Revision: http://reviews.llvm.org/D7736
llvm-svn: 230415
This adds support for the QPX vector instruction set, which is used by the
enhanced A2 cores on the IBM BG/Q supercomputers. QPX vectors are 256 bytes
wide, holding 4 double-precision floating-point values. Boolean values, modeled
here as <4 x i1> are actually also represented as floating-point values
(essentially { -1, 1 } for { false, true }). QPX shares many features with
Altivec and VSX, but is distinct from both of them. One major difference is
that, instead of adding completely-separate vector registers, QPX vector
registers are extensions of the scalar floating-point registers (lane 0 is the
corresponding scalar floating-point value). The operations supported on QPX
vectors mirrors that supported on the scalar floating-point values (with some
additional ones for permutations and logical/comparison operations).
I've been maintaining this support out-of-tree, as part of the bgclang project,
for several years. This is not the entire bgclang patch set, but is most of the
subset that can be cleanly integrated into LLVM proper at this time. Adding
this to the LLVM backend is part of my efforts to rebase bgclang to the current
LLVM trunk, but is independently useful (especially for codes that use LLVM as
a JIT in library form).
The assembler/disassembler test coverage is complete. The CodeGen test coverage
is not, but I've included some tests, and more will be added as follow-up work.
llvm-svn: 230413
This patch unifies the comdat and non-comdat code paths. By doing this
it add missing features to the comdat side and removes the fixed
section assumptions from the non-comdat side.
In ELF there is no one true section for "4 byte mergeable" constants.
We are better off computing the required properties of the section
and asking the context for it.
llvm-svn: 230411
The builder is based on a layout algorithm that tries to keep members of
small bit sets together. The new layout compresses Chromium's bit sets to
around 15% of their original size.
Differential Revision: http://reviews.llvm.org/D7796
llvm-svn: 230394
This test checks that the symbols instrprof creates have appropriate
linkage. The tests already exist in clang in a slightly different form
from before we sunk profile generation into an LLVM pass, but that's
an awkward place for them now. I'll remove/simplify the clang versions
shortly.
llvm-svn: 230383
Author: Simon Pilgrim <llvm-dev@redking.me.uk>
Date: Mon Feb 23 23:04:28 2015 +0000
Fix based on post-commit comment on D7816 & rL230177 - BUILD_VECTOR operand truncation was using the the BV's output scalar type instead of the input type.
and
Author: Simon Pilgrim <llvm-dev@redking.me.uk>
Date: Sun Feb 22 18:17:28 2015 +0000
[DagCombiner] Generalized BuildVector Vector Concatenation
The CONCAT_VECTORS combiner pass can transform the concat of two BUILD_VECTOR nodes into a single BUILD_VECTOR node.
This patch generalises this to support any number of BUILD_VECTOR nodes, and also permits UNDEF nodes to be included as well.
This was noticed as AVX vec128 -> vec256 canonicalization sometimes creates a CONCAT_VECTOR with a real vec128 lower and an vec128 UNDEF upper.
Differential Revision: http://reviews.llvm.org/D7816
as the root cause of PR22678 which is causing an assertion inside the DAG combiner.
I'll follow up to the main thread as well.
llvm-svn: 230358
The reason why these large shift sizes happen is because OpaqueConstants
currently inhibit alot of DAG combining, but that has to be addressed in
another commit (like the proposal in D6946).
Differential Revision: http://reviews.llvm.org/D6940
llvm-svn: 230355
The logic is almost there already, with our special homogeneous aggregate
handling. Tweaking it like this allows front-ends to emit AAPCS compliant code
without ever having to count registers or add discarded padding arguments.
Only arrays of i32 and i64 are needed to model AAPCS rules, but I decided to
apply the logic to all integer arrays for more consistency.
llvm-svn: 230348
Summary: Begin to add various address modes; including alloca.
Test Plan: Make sure there are no regressions in test-suite at O0/02 in mips32r1/r2
Reviewers: dsanders
Reviewed By: dsanders
Subscribers: echristo, rfuhler, llvm-commits
Differential Revision: http://reviews.llvm.org/D6426
llvm-svn: 230300
The bug was a result of getPreStartForExtend interpreting nsw/nuw
flags on an add recurrence more strongly than is legal. {S,+,X}<nsw>
implies S+X is nsw only if the backedge of the loop is taken at least
once.
NOTE: I had accidentally committed an unrelated change with the commit
message of this change in r230275 (r230275 was reverted in r230279).
This is the correct change for this commit message.
Differential Revision: http://reviews.llvm.org/D7808
llvm-svn: 230291
When debugging LTO issues with ld64, we use -save-temps to save the merged
optimized bitcode file, then invoke ld64 again on the single bitcode file to
speed up debugging code generation passes and ld64 stuff after code generation.
llvm linking a single bitcode file via lto_codegen_add_module will generate a
different bitcode file from the single input. With the newly-added
lto_codegen_set_module, we can make sure the destination module is the same as
the input.
lto_codegen_set_module will transfer the ownship of the module to code
generator.
rdar://19024554
llvm-svn: 230290
This case is interesting because ScalarEvolutionExpander lowers min(a,
b) as ~max(~a,~b). I think the profitability heuristics can be made
more clever/aggressive, but this is a start.
Differential Revision: http://reviews.llvm.org/D7821
llvm-svn: 230285
When emitting the increment operation, SCEVExpander marks the
operation as nuw or nsw based on the flags on the preincrement SCEV.
This is incorrect because, for instance, it is possible that {-6,+,1}
is <nuw> while {-6,+,1}+1 = {-5,+,1} is not.
This change teaches SCEV to mark the increment as nuw/nsw only if it
can explicitly prove that the increment operation won't overflow.
Apart from the attached test case, another (more realistic) manifestation
of the bug can be seen in Transforms/IndVarSimplify/pr20680.ll.
NOTE: this change was landed with an incorrect commit message in
rL230275 and was reverted for that reason in rL230279. This commit
message is the correct one.
Differential Revision: http://reviews.llvm.org/D7778
llvm-svn: 230280
230275 got committed with an incorrect commit message due to a mixup
on my side. Will re-land in a few moments with the correct commit
message.
llvm-svn: 230279
This patch teaches the backend how to expand a double-half conversion into
a double-float conversion immediately followed by a float-half conversion.
We do this only under fast-math, and if float-half conversions are legal
for the target.
Added test CodeGen/X86/fastmath-float-half-conversion.ll
Differential Revision: http://reviews.llvm.org/D7832
llvm-svn: 230276
The bug was a result of getPreStartForExtend interpreting nsw/nuw
flags on an add recurrence more strongly than is legal. {S,+,X}<nsw>
implies S+X is nsw only if the backedge of the loop is taken at least
once.
Differential Revision: http://reviews.llvm.org/D7808
llvm-svn: 230275
Prologue emission, in some cases, requires calls to a stack probe helper
function. The amount of stack to probe is passed as a register
argument in the Win64 ABI but the instruction sequence used is
pessimistic: it assumes that the number of bytes to probe is greater
than 4 GB.
Instead, select a more appropriate opcode depending on the number of
bytes we are going to probe.
llvm-svn: 230270
Front-ends could use global unnamed_addr to hold pointers to other
symbols, like @gotequivalent below:
@foo = global i32 42
@gotequivalent = private unnamed_addr constant i32* @foo
@delta = global i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequivalent to i64),
i64 ptrtoint (i32* @delta to i64))
to i32)
The global @delta holds a data "PC"-relative offset to @gotequivalent,
an unnamed pointer to @foo. The darwin/x86-64 assembly output for this follows:
.globl _foo
_foo:
.long 42
.globl _gotequivalent
_gotequivalent:
.quad _foo
.globl _delta
_delta:
.long _gotequivalent-_delta
Since unnamed_addr indicates that the address is not significant, only
the content, we can optimize the case above by replacing pc-relative
accesses to "GOT equivalent" globals, by a PC relative access to the GOT
entry of the final symbol instead. Therefore, "delta" can contain a pc
relative relocation to foo's GOT entry and we avoid the emission of
"gotequivalent", yielding the assembly code below:
.globl _foo
_foo:
.long 42
.globl _delta
_delta:
.long _foo@GOTPCREL+4
There are a couple of advantages of doing this: (1) Front-ends that need
to emit a great deal of data to store pointers to external symbols could
save space by not emitting such "got equivalent" globals and (2) IR
constructs combined with this opt opens a way to represent GOT pcrel
relocations by using the LLVM IR, which is something we previously had
no way to express.
Differential Revision: http://reviews.llvm.org/D6922
rdar://problem/18534217
llvm-svn: 230264
When multiple regions start on the same line, llvm-cov was just
showing the count of the last one as the line count. This can be
confusing and misleading for things like one-liner loops, where the
count at the end isn't very interesting, or even "if" statements with
an opening brace at the end of the line.
Instead, use the maximum of all of the region start counts.
llvm-svn: 230263
This patch adds the isProfitableToHoist API. For AArch64, we want to prevent a
fmul from being hoisted in cases where it is more profitable to form a
fmsub/fmadd.
Phabricator Review: http://reviews.llvm.org/D7299
Patch by Lawrence Hu <lawrence@codeaurora.org>
llvm-svn: 230241
Summary:
-mno-odd-spreg prohibits the use of odd-numbered single-precision floating
point registers. However, vector insert/extract was still using them when
manipulating the subregisters of an MSA register. Fixed this by ensuring
that insertion/extraction is only performed on even-numbered vector
registers when -mno-odd-spreg is given.
Reviewers: vmedic, sstankovic
Reviewed By: sstankovic
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7672
llvm-svn: 230235
Teach the peephole optimizer to work with MMX instructions by adding
entries into the foldable tables. This covers folding opportunities not
handled during isel.
llvm-svn: 230226
Add tests to cover the RR form of the pslli, psrli and psrai intrinsics.
In the next commit, the loads are going to be folded and the
instructions use the RM form.
llvm-svn: 230224
This adds the --class-definitions flag. If specified, when dumping
types, instead of "class Foo" you will see the full class definition,
with member functions, constructors, access specifiers.
NOTE: Using this option can be very slow, as generating a full class
definition requires accessing many different parts of the PDB.
llvm-svn: 230203
This increases the flexibility of how to dump different
symbol types -- necessary for context-sensitive formatting of
symbol types -- and also improves the modularity by allowing
the dumping to be implemented in the actual dumper, as opposed
to in the PDB library.
llvm-svn: 230184
This removes a wealth of options, and instead now only provides
three options. -symbols, -types, and -compilands. This greatly
simplifies use of the tool, and makes it easier to understand
what you're going to see when you run the tool.
llvm-svn: 230182
While fuzzing LLVM bitcode files, I discovered that (1) the bitcode reader doesn't check that alignments are no larger than 2**29; (2) downstream code doesn't check the range; and (3) for values out of range, corresponding large memory requests (based on alignment size) will fail. This code fixes the bitcode reader to check for valid alignments, fixing this problem.
This CL fixes alignment value on global variables, functions, and instructions: alloca, load, load atomic, store, store atomic.
Patch by Karl Schimpf (kschimpf@google.com).
llvm-svn: 230180
The CONCAT_VECTORS combiner pass can transform the concat of two BUILD_VECTOR nodes into a single BUILD_VECTOR node.
This patch generalises this to support any number of BUILD_VECTOR nodes, and also permits UNDEF nodes to be included as well.
This was noticed as AVX vec128 -> vec256 canonicalization sometimes creates a CONCAT_VECTOR with a real vec128 lower and an vec128 UNDEF upper.
Differential Revision: http://reviews.llvm.org/D7816
llvm-svn: 230177
The issue was that the test Makefile had not been updated to
provide a value for HAVE_DIA_SDK, so it was being initialized
incorrectly. Hopefully this brings everything back to green.
llvm-svn: 230162
NOTE: This patch intentionally breaks the build. It attempts
to resubmit r230083, but with some debug logging in the CMake
and lit config files to determine why certain bots do not
correctly disable the DIA tests when DIA is not available.
After a sufficient number of bots fail, this patch will either
be reverted or, if the cause of the failure becomes obvious,
a fix submitted with the log statements removed.
llvm-svn: 230161
calculations. Semantically non-functional change.
This gets rid of some of the SCEV -> Value -> SCEV round tripping and
the Construct(SMin|SMax)Of and MaybeSimplify helper routines.
llvm-svn: 230150
Stack realignment occurs after the prolog, not during, for Win64.
Because of this, don't factor in the maximum stack alignment when
establishing a frame pointer.
This fixes PR22572.
llvm-svn: 230113
Parse (and write) symbolic constants in debug info `flags:` fields.
This prevents a readability (and CHECK-ability) regression with the new
debug info hierarchy.
Old (well, current) assembly, with pretty-printing:
!{!"...\\0016387", ...} ; ... [public] [rvalue reference]
Flags field without this change:
!MDDerivedType(flags: 16387, ...)
Flags field with this change:
!MDDerivedType(flags: DIFlagPublic | DIFlagRValueReference, ...)
As discussed in the review thread, this isn't a final state. Most of
these flags correspond to `DW_AT_` symbolic constants, and we might
eventually want to support arbitrary attributes in some form. However,
as it stands now, some of the flags correspond to other concepts (like
`FlagStaticMember`); until things are refactored this is the simplest
way to move forward without regressing assembly.
llvm-svn: 230111
Previously, this pass ran over every function in the Module if added to the pass order. With this change, it runs only over those with a GC attribute where the GC explicitly opts in. A GC can also choose which of entry safepoint polls, backedge safepoint polls, and call safepoints it wants. I hope to get these exposed as checks on the GCStrategy at some point, but for now, the checks are manual string comparisons.
llvm-svn: 230097
This adds only a very basic set of tests that dump a few
functions and object files.
Differential Revision: http://reviews.llvm.org/D7656
Reviewed By: David Blaikie
llvm-svn: 230083
The expansion code does the same thing. Since
the operands were not defined with the correct
types, this has the side effect of fixing operand
folding since the expanded pseudo would never use
SGPRs or inline immediates.
llvm-svn: 230072
This enables a few useful combines that used to only
use fma.
Also since v_mad_f32 apparently does not support denormals,
disable the existing cases that are custom handled if they are
requested.
llvm-svn: 230071
Yet another chapter in the endless story. While this looks like we leave
the loop in a non-canonical state this replicates the logic in
LoopSimplify so it doesn't diverge from the canonical form in any way.
PR21968
llvm-svn: 230058
In the old (well, current) schema, there are two types of file
references: untagged and tagged (the latter references the former).
!0 = !{!"filename", !"/directory"}
!1 = !{!"0x29", !1} ; DW_TAG_file_type [filename] [/directory]
The interface to `DIBuilder` universally takes the tagged version,
described by `DIFile`. However, most `file:` references actually use
the untagged version directly.
In the new hierarchy, I'm merging this into a single node: `MDFile`.
Originally I'd planned to keep the old schema unchanged until after I
moved the new hierarchy into place.
However, it turns out to be trivial to make `MDFile` match both nodes at
the same time.
- Anyone referencing !1 does so through `DIFile`, whose implementation
I need to gut anyway (as I do the rest of the `DIDescriptor`s).
- Anyone referencing !0 just references an `MDNode`, and expects a
node with two `MDString` operands.
This commit achieves that, and updates all the testcases for the parts
of the new hierarchy that used the two-node schema (I've replaced the
untagged nodes with `distinct !{}` to make the diff clear (otherwise the
metadata all gets renumbered); it might be worthwhile to come back and
delete those nodes and renumber the world, not sure).
llvm-svn: 230057
This patch introduces a new mechanism that allows IR modules to co-operatively
build pointer sets corresponding to addresses within a given set of
globals. One particular use case for this is to allow a C++ program to
efficiently verify (at each call site) that a vtable pointer is in the set
of valid vtable pointers for the class or its derived classes. One way of
doing this is for a toolchain component to build, for each class, a bit set
that maps to the memory region allocated for the vtables, such that each 1
bit in the bit set maps to a valid vtable for that class, and lay out the
vtables next to each other, to minimize the total size of the bit sets.
The patch introduces a metadata format for representing pointer sets, an
'@llvm.bitset.test' intrinsic and an LTO lowering pass that lays out the globals
and builds the bitsets, and documents the new feature.
Differential Revision: http://reviews.llvm.org/D7288
llvm-svn: 230054
usage of instruction ADDU16 by CodeGen. For this instruction an improper
register is allocated, i.e. the register that is not from register set defined
for the instruction.
llvm-svn: 230053
This patch teaches X86FastISel how to select intrinsic 'convert_from_fp16' and
intrinsic 'convert_to_fp16'.
If the target has F16C, we can select VCVTPS2PHrr for a float-half conversion,
and VCVTPH2PSrr for a half-float conversion.
Differential Revision: http://reviews.llvm.org/D7673
llvm-svn: 230043
Before calling Function::getGC to test for enablement, we need to make sure there's actually a GC at all via Function::hasGC. Otherwise, we'd crash on functions without a GC. Thankfully, this only mattered if you manually scheduled the pass, but still, oops. :(
llvm-svn: 230040
The IBM BG/Q supercomputer's A2 cores have a hardware prefetching unit, the
L1P, but it does not prefetch directly into the A2's L1 cache. Instead, it
prefetches into its own L1P buffer, and the latency to access that buffer is
significantly higher than that to the L1 cache (although smaller than the
latency to the L2 cache). As a result, especially when multiple hardware
threads are not actively busy, explicitly prefetching data into the L1 cache is
advantageous.
I've been using this pass out-of-tree for data prefetching on the BG/Q for well
over a year, and it has worked quite well. It is enabled by default only for
the BG/Q, but can be enabled for other cores as well via a command-line option.
Eventually, we might want to add some TTI interfaces and move this into
Transforms/Scalar (there is nothing particularly target dependent about it,
although only machines like the BG/Q will benefit from its simplistic
strategy).
llvm-svn: 229966
The new shuffle lowering has been the default for some time. I've
enabled the new legality testing by default with no really blocking
regressions. I've fuzz tested this very heavily (many millions of fuzz
test cases have passed at this point). And this cleans up a ton of code.
=]
Thanks again to the many folks that helped with this transition. There
was a lot of work by others that went into the new shuffle lowering to
make it really excellent.
In case you aren't using a diff algorithm that can handle this:
X86ISelLowering.cpp: 22 insertions(+), 2940 deletions(-)
llvm-svn: 229964
is going well, remove the flag and the code for the old legality tests.
This is the first step toward removing the entire old vector shuffle
lowering. *Much* more code to delete coming up next.
llvm-svn: 229963
When writing the bitcode serialization for the new debug info hierarchy,
I assumed two fields would never be null.
Drop that assumption, since it's brittle (and crashes the
`BitcodeWriter` if wrong), and is a check better left for the verifier
anyway. (No need for a bitcode upgrade here, since the new hierarchy is
still not in place.)
The fields in question are `MDCompileUnit::getFile()` and
`MDDerivedType::getBaseType()`, the latter of which isn't null in
test/Transforms/Mem2Reg/ConvertDebugInfo2.ll (see !14, a pointer to
nothing). While the testcase might have bitrotted, there's no reason
for the bitcode format to rely on non-null for metadata operands.
This also fixes a bug in `AsmWriter` where if the `file:` is null it
isn't emitted (caught by the double-round trip in the testcase I'm
adding) -- this is a required field in `LLParser`.
I'll circle back to ConvertDebugInfo2. Once the specialized nodes are
in place, I'll be trying to turn the debug info verifier back on by
default (in the newer module pass form committed r206300) and throwing
more logic in there. If the testcase has bitrotted (as opposed to me
not understanding the schema correctly) I'll fix it then.
llvm-svn: 229960
This change addresses a deficiency pointed out in PR22629. To copy from the bug
report:
[from the bug report]
Consider this code:
int f(int x) {
int a[] = {12};
return a[x];
}
GCC knows to optimize this to
movl $12, %eax
ret
The code generated by recent Clang at -O3 is:
movslq %edi, %rax
movl .L_ZZ1fiE1a(,%rax,4), %eax
retq
.L_ZZ1fiE1a:
.long 12 # 0xc
[end from the bug report]
This definitely seems worth fixing. I've also seen this kind of code before (as
the base case of generic vector wrapper templates with one element).
The general idea is to look at the GEP feeding a load or a store, which has
some variable as its first non-zero index, and determine if that index must be
zero (or else an out-of-bounds access would occur). We can do this for allocas
and globals with constant initializers where we know the maximum size of the
underlying object. When we find such a GEP, we create a new one for the memory
access with that first variable index replaced with a constant zero.
Even if we can't eliminate the memory access (and sometimes we can't), it is
still useful because it removes unnecessary indexing calculations.
llvm-svn: 229959
reflects the fact that the x86 backend can in fact lower any shuffle you
want it to with reasonably high code quality.
My recent work on the new vector shuffle has made this regress *very*
little. The diff in the test cases makes me very, very happy.
llvm-svn: 229958
one test case that is only partially tested in 32-bits into two test
cases so that the script doesn't generate massive spews of tests for the
cases we don't care about.
llvm-svn: 229955
When back merging the changes in 229945 I noticed that I forgot to mark the test cases with the appropriate GC. We want the rewriting to be off by default (even when manually added to the pass order), not on-by default. To keep the current test working, mark them as using the statepoint-example GC and whitelist that GC.
Longer term, we need a better selection mechanism here for both actual usage and testing. As I migrate more tests to the in tree version of this pass, I will probably need to update the enable/disable logic as well.
llvm-svn: 229954
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.
This patch is setting the stage for work to continue in tree. In particular, there are known naming and style violations in the current patch. I'll try to get those resolved over the next week or so. As I touch each area to make style changes, I need to make sure we have adequate testing in place. As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.
The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future. Note that the current change doesn't actually contain a useful liveness analysis. It was seperated into a followup change as the code wasn't ready to be shared. Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm.
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.
llvm-svn: 229945