This previously made references to 2.3-draft which was a short
lived version number in 2017. It was replaced by date based
versions leading up to ratification.
This patch uses the latest ratified version number and just says
what the behavior is. Nothing here is in flux.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D100878
This was checked in some asserts, but not enforced by the
instruction matching.
There's still a second bug that we don't check that vt and vd
are different registers, but that will require custom checking.
Differential Revision: https://reviews.llvm.org/D100928
This makes the memcpy-memcpy and memcpy-memset optimizations work for
variable sizes as long as they are equal, relaxing the old restriction
that they are constant integers. If they're not equal, the old
requirement that they are constant integers with certain size
restrictions is used.
The implementation works by pushing the length tests further down in the
code, which reveals some places where it's enough that the lengths are
equal (but not necessarily constant).
Differential Revision: https://reviews.llvm.org/D100870
Trying to evaluate a GEP would assert with
"Ty == cast<PointerType>(C->getType()->getScalarType())->getElementType()"
because the type of the pointer we would evaluate the GEP argument to
would be a different type than the GEP was expecting. We should treat
pointer stripping as a bitcast.
The test adds a redundant GEP that would crash due to type mismatch.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D100970
Discovered during attributor testing comparing stats with
and without the attributor. Willreturn should not be inferred
for nonexact definitions.
Differential Revision: https://reviews.llvm.org/D100988
Fix for PR49984
This was discovered during Attributor testing.
Memset was always created with alignment of 1
and in case when strncpy alignment was changed
it triggered an assertion in the AttrBuilder.
Memset will now be created with appropriate alignment.
Differential Revision: https://reviews.llvm.org/D100875
PR50049 demonstrated an infinite loop between OR(SHUFFLE,SHUFFLE) <-> BLEND(SHUFFLE,SHUFFLE) patterns.
The UNDEF elements were allowing a combined shuffle mask to be widened which lost the undef element, resulting us needing to use the BLEND pattern (as the undef element would need to be zero for the OR pattern). But then bitcast folds would re-expose the undef element allowing us to use OR again.....
Let it work on a very small kernels only. Measurements showed
the performance benefit is not worth the compile time.
Differential Revision: https://reviews.llvm.org/D100904
- Previously, https://reviews.llvm.org/D72680 introduced a new attribute called `AllowSymbolAtNameStart` (in relation to the MAsmParser changes) in `MCAsmInfo.h` which (according to the comment in the header) allows the following behaviour:
```
/// This is true if the assembler allows $ @ ? characters at the start of
/// symbol names. Defaults to false.
```
- However, the usage of this field in AsmLexer.cpp doesn't seem completely accurate* for a couple of reasons.
```
default:
if (MAI.doesAllowSymbolAtNameStart()) {
// Handle Microsoft-style identifier: [a-zA-Z_$.@?][a-zA-Z0-9_$.@#?]*
if (!isDigit(CurChar) &&
isIdentifierChar(CurChar, MAI.doesAllowAtInName(),
AllowHashInIdentifier))
return LexIdentifier();
}
```
1. The Dollar and At tokens, when occurring at the start of the string, are treated as separate tokens (AsmToken::Dollar and AsmToken::At respectively) and not lexed as an Identifier.
2. I'm not too sure why `MAI.doesAllowAtInName()` is used when `AllowAtInIdentifier` could be used. For X86 platforms, afaict, this shouldn't be an issue, since the `CommentString` attribute isn't "@". (alternatively the call to the setter can be set anywhere else as needed). The `AllowAtInName` does have an additional important meaning, but in the context of AsmLexer, shouldn't mean anything different compared to `AllowAtInIdentifier`
My proposal is the following:
- Introduce 3 new fields called `AllowQuestionTokenAtStartOfString`, `AllowDollarTokenAtStartOfString` and `AllowAtTokenAtStartOfString` in MCAsmInfo.h which will encapsulate the previously documented behaviour of "allowing $, @, ? characters at the start of symbol names")
- Introduce these fields where "$", "@" are lexed, and treat them as identifiers depending on whether `Allow[Dollar|At]TokenAtStartOfString` is set.
- For the sole case of "?", append it to the existing logic for treating a "default" token as an Identifier.
z/OS (HLASM) will also make use of some of these fields in follow up patches.
completely accurate* - This was based on the comments and the intended behaviour the code. I might have completely misinterpreted it, and if that is the case my sincere apologies. We can close this patch if necessary, if there are no changes to be made :)
Depends on https://reviews.llvm.org/D99374
Reviewed By: Jonathan.Crowther
Differential Revision: https://reviews.llvm.org/D99889
CommandLine.h is indirectly included in ~50% of TUs when building
clang, and VirtualFileSystem.h is large.
(Already remarked by jhenderson on D70769.)
No behavior change.
Differential Revision: https://reviews.llvm.org/D100957
This patch changes the lowering of SELECT_CC from Legal to Expand for scalable
vector and adds support for scalable vectors in performSelectCombine.
When selecting the nodes to lower in visitSELECT it checks if it is possible to
use SELECT_CC in cases where SETCC is followed by SELECT. visistSELECT checks
if SELECT_CC is legal or custom to replace SELECT by SELECT_CC.
SELECT_CC used to be legal for scalable vector, so the node changes to
SELECT_CC. This used to crash the compiler as there is no support for SELECT_CC
with scalable vectors. So now the compiler lowers to VSELECT instead of
SELECT_CC.
Differential Revision: https://reviews.llvm.org/D100485
If you gave clang the options `--target=arm-pc-windows-msvc` and
`-march=armv8-a+crypto` together, the crypto extension would not be
enabled in the compilation, and you'd see the following warning
message suggesting that the 'armv8-a' had been ignored:
clang: warning: ignoring extension 'crypto' because the 'armv7-a' architecture does not support it [-Winvalid-command-line-argument]
This happens because Triple::getARMCPUForArch(), for the Win32 OS,
unconditionally returns "cortex-a9" (an Armv7 CPU) regardless of
MArch, which overrides the architecture setting on the command line.
I don't think that the combination of Windows and AArch32 _should_
unconditionally outlaw the use of the crypto extension. MSVC itself
doesn't think so: you can perfectly well compile Thumb crypto code
using its AArch32-targeted compiler.
All the other default CPUs in the same switch statement are
conditional on a particular MArch setting; this is the only one that
returns a particular CPU _regardless_ of MArch. So I've fixed this one
by adding a condition, so that if you ask for an architecture *above*
v7, the default of Cortex-A9 no longer overrides it.
Reviewed By: mstorsjo
Differential Revision: https://reviews.llvm.org/D100937
This patch adds incrementally-better support for SPLAT_VECTOR in a
handful of vector combines by changing a few more
isBuildVectorAllOnes/isBuildVectorAllZeros to the equivalent
isConstantSplatVectorAllOnes/Zeros calls.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D100851
This patch fixes a case missed out by D100574, in which RVV scalable
stack offset computations may require three live registers in the case
where the offset's fixed component is 12 bits or larger and has a
scalable component.
Instead of adding an additional emergency spill slot, this patch further
optimizes the scalable stack offset computation sequences to reduce
register usage.
By emitting the sequence to compute the scalable component before the
fixed component, we can free up one scratch register to be reallocated
by the sequence for the fixed component. Doing this saves one register
and thus one additional emergency spill slot.
Compare:
$x5 = LUI 1
$x1 = ADDIW killed $x5, -1896
$x1 = ADD $x2, killed $x1
$x5 = PseudoReadVLENB
$x6 = ADDI $x0, 50
$x5 = MUL killed $x5, killed $x6
$x1 = ADD killed $x1, killed $x5
versus:
$x5 = PseudoReadVLENB
$x1 = ADDI $x0, 50
$x5 = MUL killed $x5, killed $x1
$x1 = LUI 1
$x1 = ADDIW killed $x1, -1896
$x1 = ADD $x2, killed $x1
$x1 = ADD killed $x1, killed $x5
Reviewed By: HsiangKai
Differential Revision: https://reviews.llvm.org/D100847
We were missing some instruction costs when converting vectors of
floating point half types into integers, so I've added those here.
I also manually generated assembly code for each FP->int case and
looked at the number of instructions generated, which meant
adjusting some of the existing costs too.
I've updated an existing test to reflect the new costs:
Analysis/CostModel/AArch64/sve-fptoi.ll
Differential Revision: https://reviews.llvm.org/D99935
This reverts commit ea1a0d7c9a.
While this is strictly more powerful, it is also strictly slower.
InstSimplify intentionally does not perform many folds that it
is allowed to perform, if doing so requires a KnownBits calculation
that will be repeated in InstCombine.
Maybe it's worthwhile to do this here, but that needs a more
explicitly stated motivation, evaluated in a review.
New registers FRM, FFLAGS and FCSR was defined. They represent
corresponding system registers. The new registers are necessary to
properly order floating point instructions in non-default modes.
Differential Revision: https://reviews.llvm.org/D99083
PHIElimination may insert copy instructions in multiple basic
blocks. Moving debug locations across basic block boundaries would be
misleading as illustrated by the test case.
rdar://75463656
Differential Revision: https://reviews.llvm.org/D100886
This is just a cleanup of the very high level stuff. I'm sure there is
more to update here but I'll leave that to others and/or a followup.
Differential Revision: https://reviews.llvm.org/D100888
FunctionAnalysisManagerCGSCCProxy should not be preserved if any of its
keys may be invalid. Since we are not removing/adding functions in
FuncAttrs, it's fine to preserve it.
Reviewed By: asbirlea
Differential Revision: https://reviews.llvm.org/D100893
This reverts commit 13ec913bdf.
This commit introduces new uses of the overflow checking intrinsics that
depend on implementations in compiler-rt, which Windows users generally
do not link against. I filed an issue (somewhere) to make clang
auto-link the builtins library to resolve this situation, but until that
happens, it isn't reasonable for the optimizer to introduce new link
time dependencies.
It used to be that all of our intrinsics were call instructions, but over time, we've added more and more invokable intrinsics. According to the verifier, we're up to 8 right now. As IntrinsicInst is a sub-class of CallInst, this puts us in an awkward spot where the idiomatic means to check for intrinsic has a false negative if the intrinsic is invoked.
This change switches IntrinsicInst from being a sub-class of CallInst to being a subclass of CallBase. This allows invoked intrinsics to be instances of IntrinsicInst, at the cost of requiring a few more casts to CallInst in places where the intrinsic really is known to be a call, not an invoke.
After this lands and has baked for a couple days, planned cleanups:
Make GCStatepointInst a IntrinsicInst subclass.
Merge intrinsic handling in InstCombine and use idiomatic visitIntrinsicInst entry point for InstVisitor.
Do the same in SelectionDAG.
Do the same in FastISEL.
Differential Revision: https://reviews.llvm.org/D99976
This is a more convoluted form of the same pattern "sext of NSW trunc",
but in this case the operand of trunc was a right-shift,
and the truncation chops off just the zero bits that were shifted-in.
We already special-cased a few interesting patterns,
but that is strictly less powerful than using KnownBits.
So instead get the known bits for the operand of `and`,
and iff all the unset bits of the `and`-mask are known to be zeros
in the operand, we can omit said `and`.
Introduced the cost of thre reverse shuffles for AArch64, currently just
copied the costs for PermuteSingleSrc.
Differential Revision: https://reviews.llvm.org/D100871
I'd reverted this in commit 3b6acb1797 due to buildbot failures. This patch contains the fix for said issue. I'd forgotten to handle the case where two phis in the same block have different operand order. We canonicalize away from this, but it's still valid IR. The tests included in this change (as opposed to simply having test output changed), crashed without the fix.
Original commit message follows...
This extends the phi handling in isKnownNonEqual with a special case based on invertible recurrences. If we can prove the recurrence is invertible (which many common ones are), we can recurse through the start operands of the recurrence skipping the phi cycle.
(Side note: Instcombine currently does not push back through these cases. I will implement that in a follow up change w/separate review.)
Differential Revision: https://reviews.llvm.org/D99912
af7925b4dd added a custom DAG combine for recognizing fp-to-ints of
extract_subvectors that could be lowered to f64x2.convert_low_i32x4_{s,u}
instructions. This commit extends the combines to recognize equivalent
extract_subvectors of fp-to-ints as well.
Differential Revision: https://reviews.llvm.org/D100790
Adding the switches to reduce diffs. I'm about to split that into an lshr part and an ashr part, doing the NFC part first makes it easier to maintain both diffs.