We drew the diagnostic edges to wrong statements in cases the note was on a macro.
The fix is simple, but seems to work just fine for a whole bunch of test cases (plist-macros.cpp).
Also, removes an unnecessary edge in edges-new.mm, when function signature starts with a macro.
llvm-svn: 183599
Previously our edges were completely broken here; now, the final result
is a very simple set of edges in most cases: one up to the "for" keyword
for context, and one into the body of the loop. This matches the behavior
for ObjC for-in loops.
In the AST, however, CXXForRangeStmts are handled very differently from
ObjCForCollectionStmts. Since they are specified in terms of equivalent
statements in the C++ standard, we actually have implicit AST nodes for
all of the semantic statements. This makes evaluation very easy, but
diagnostic locations a bit trickier. Fortunately, the problem can be
generally defined away by marking all of the implicit statements as
part of the top-level for-range statement.
One of the implicit statements in a for-range statement is the declaration
of implicit iterators __begin and __end. The CFG synthesizes two
separate DeclStmts to match each of these decls, but until now these
synthetic DeclStmts weren't in the function's ParentMap. Now, the CFG
keeps track of its synthetic statements, and the AnalysisDeclContext will
make sure to add them to the ParentMap.
<rdar://problem/14038483>
llvm-svn: 183449
We previously asserted that there was a top-level function entry edge, but
if the function decl's location is invalid (or within a macro) this edge
might not exist. Change the assertion to an actual check, and don't drop
the first path piece if it doesn't match.
<rdar://problem/14070304>
llvm-svn: 183358
The edge optimizer needs to see edges for, say, implicit casts (which have
the same source location as their operand) to uniformly simplify the
entire path. However, we still don't want to produce edges from a statement
to /itself/, which could occur when two nodes in a row have the same
statement location.
This necessitated moving the check for redundant notes to after edge
optimization, since the check relies on notes being adjacent in the path.
<rdar://problem/14061675>
llvm-svn: 183357
A.1 -> A -> B
becomes
A.1 -> B
This only applies if there's an edge from a subexpression to its parent
expression, and that is immediately followed by another edge from the
parent expression to a subsequent expression. Normally this is useful for
bringing the edges back to the left side of the code, but when the
subexpression is on a different line the backedge ends up looking strange,
and may even obscure code. In these cases, it's better to just continue
to the next top-level statement.
llvm-svn: 183164
Specifically, if the line is over 80 characters, or if the top-level
statement spans mulitple lines, we should preserve sub-expression edges
even if they form a simple cycle as described in the last commit, because
it's harder to infer what's going on than it is for shorter lines.
llvm-svn: 183163
Generating context arrows can result in quite a few arrows surrounding a
relatively simple expression, often containing only a single path note.
|
1 +--2---+
v/ v
auto m = new m // 3 (the path note)
|\ |
5 +--4---+
v
Note also that 5 and 1 are two ends of the "same" arrow, i.e. they go from
event to event. 3 is not an arrow but the path note itself.
Now, if we see a pair of edges like 2 and 4---where 4 is the reverse of 2
and there is optionally a single path note between them---we will
eliminate /both/ edges. Anything more complicated will be left as is
(more edges involved, an inlined call, etc).
The next commit will refine this to preserve the arrows in a larger
expression, so that we don't lose all context.
llvm-svn: 183162
The old edge builder didn't have a notion of nested statement contexts,
so there was no special treatment of a logical operator inside an if
(or inside another logical operator). The new edge builder always tries
to establish the full context up to the top-level statement, so it's
important to know how much context has been established already rather
than just checking the innermost context.
This restores some of the old behavior for the old edge generation:
the context of a logical operator's non-controlling expression is the
subexpression in the old edge algorithm, but the entire operator
expression in the new algorithm.
llvm-svn: 183160
The current edge-generation algorithm sometimes creates edges from a
top-level statement A to a sub-expression B.1 that's not at the start of B.
This creates a "swoosh" effect where the arrow is drawn on top of the
text at the start of B. In these cases, the results are clearer if we see
an edge from A to B, then another one from B to B.1.
Admittedly, this does create a /lot/ of arrows, some of which merely hop
into a subexpression and then out again for a single note. The next commit
will eliminate these if the subexpression is simple enough.
This updates and reuses some of the infrastructure from the old edge-
generation algorithm to find the "enclosing statement" context for a
given expression. One change in particular marks the context of the
LHS or RHS of a logical binary operator (&&, ||) as the entire operator
expression, rather than the subexpression itself. This matches our behavior
for ?:, and allows us to handle nested context information.
<rdar://problem/13902816>
llvm-svn: 183159
Neither the compiler nor the analyzer are doing anything with non-VarDecl
decls in the CFG, and having them there creates extra nodes in the
analyzer's path diagnostics. Simplify the CFG (and the path edges) by
simply leaving them out. We can always add interesting decls back in when
they become relevant.
Note that this only affects decls declared in a DeclStmt, and then only
those that appear within a function body.
llvm-svn: 183157
In many cases, the edge from the "if" to the condition, followed by an edge from the branch condition to the target code, is uninteresting.
In such cases, we should fold the two edges into one from the "if" to the target.
This also applies to loops.
Implements <rdar://problem/14034763>.
llvm-svn: 183018
...and make this work correctly in the current codebase.
After living on this for a while, it turns out to look very strange for
inlined functions that have only a single statement, and somewhat strange
for inlined functions in general (since they are still conceptually in the
middle of the path, and there is a function-entry path note).
It's worth noting that this only affects inlined functions; in the new
arrow generation algorithm, the top-level function still starts at the
first real statement in the function body, not the enclosing CompoundStmt.
This reverts r182078 / dbfa950abe0e55b173286a306ee620eff5f72ea.
llvm-svn: 182963
Most loop notes (like "entering loop body") are attached to the condition
expression guarding a loop or its equivalent. For loops may not have a
condition expression, though. Rather than crashing, just use the entire
ForStmt as the location. This is probably the best we can do.
<rdar://problem/14016063>
llvm-svn: 182904