Summary:
I've noticed that the bitcasts we introduce for these make computeKnownBits and computeNumSignBits not work well in LegalizeVectorOps. LegalizeVectorOps legalizes bottom up while LegalizeDAG legalizes top down. The bottom up strategy for LegalizeVectorOps means operands are legalized before their uses. So we promote and/or/xor before we legalize the operands that use them making computeKnownBits/computeNumSignBits in places like LowerTruncate suboptimal. I looked at changing LegalizeVectorOps to be top down as well, but that was more disruptive and caused some regressions. I also looked at just moving promotion of binops to LegalizeDAG, but that had a few issues one around matching AND,ANDN,OR into VSELECT because I had to create ANDN as vXi64, but the other nodes hadn't legalized yet, I didn't look too hard at fixing that.
This patch seems to produce better results overall than my other attempts. We now form broadcasts of constants better in some cases. For at least some of them the AND was being introduced in LegalizeDAG, promoted to vXi64, and the BUILD_VECTOR was also legalized there. I think we got bad ordering of that. Now the promotion is out of the legalizer so we handle this better.
In the longer term I think we really should evaluate whether we should be doing this promotion at all. It's really there to reduce isel pattern count, but I'm wondering if we'd be better served just eating the pattern cost or doing C++ based isel for vector and/or/xor in X86ISelDAGToDAG. The masked and/or/xor will definitely be difficult in patterns if a bitcast gets between the vselect and the and/or/xor node. That becomes a lot of permutations to cover.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53107
llvm-svn: 344487
Landing this as a separate part of https://reviews.llvm.org/D50480, being a
seemingly unrelated change ([LV] Vectorizing loops of arbitrary trip count
without remainder under opt for size).
llvm-svn: 344483
Tests should not assume the linker's name, CLANG_DEFAULT_LINKER could
change it.
Differential Revision: https://reviews.llvm.org/D53219
llvm-svn: 344482
Summary:
Silence warning when linking unittest binary by not passing
-lstdc++ to the linker since it is ignored.
Reviewers: morehouse
Reviewed By: morehouse
Subscribers: mgorny
Differential Revision: https://reviews.llvm.org/D53225
llvm-svn: 344480
The final stage of CTPOP expansion (v = (v * 0x01010101...) >> (Len - 8)) is completely pointless for the byte (Len = 8) case as it reduces to (v = (v * 0x01...) >> 0), but annoyingly this doesn't always get optimized away.
Found while investigating generic vector CTPOP expansion (PR32655).
llvm-svn: 344477
This is part of the missing IR-level folding noted in D52912.
This should be ok as a canonicalization because the new shuffle mask can't
be any more complicated than the existing shuffle mask. If there's some
target where the shorter vector shuffle is not legal, it should just end up
expanding to something like the pair of shuffles that we're starting with here.
Differential Revision: https://reviews.llvm.org/D53037
llvm-svn: 344476
Fix llvm.org/pr39054:
- Register _lldb as a built-in module during initialization of script interpreter,
- Reverse the order of imports in __init__.py: first try to import by absolute name, which will find the built-in module in the context of lldb (and other hosts that embed liblldb), then try relative import, in case the module is being imported from Python interpreter.
This works for SWIG>=3.0.11; before that, SWIG did not support custom module import code.
Differential revision: https://reviews.llvm.org/D52404
llvm-svn: 344474
interleave-group
The vectorizer currently does not attempt to create interleave-groups that
contain predicated loads/stores; predicated strided accesses can currently be
vectorized only using masked gather/scatter or scalarization. This patch makes
predicated loads/stores candidates for forming interleave-groups during the
Loop-Vectorizer's analysis, and adds the proper support for masked-interleave-
groups to the Loop-Vectorizer's planning and transformation stages. The patch
also extends the TTI API to allow querying the cost of masked interleave groups
(which each target can control); Targets that support masked vector loads/
stores may choose to enable this feature and allow vectorizing predicated
strided loads/stores using masked wide loads/stores and shuffles.
Reviewers: Ayal, hsaito, dcaballe, fhahn, javed.absar
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D53011
llvm-svn: 344472
Summary: This is similar to what D52528 did for loads. It should match what generic type legalization does in 64-bit mode where it uses a v2i64 cast and an i64 store.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53173
llvm-svn: 344470
This adds two arguments to the main ExecutionSession::lookup method:
MatchNonExportedInJD, and MatchNonExported. These control whether and where
hidden symbols should be matched when searching a list of JITDylibs.
A similar effect could have been achieved by filtering search results, but
this would have involved materializing symbol definitions (since materialization
is triggered on lookup) only to throw the results away, among other issues.
llvm-svn: 344467
Summary:
Enhanced support for Z3 in the cmake configuration of clang; now it is possible to specify any arbitrary Z3 install prefix (CLANG_ANALYZER_Z3_PREFIX) to cmake with lib (or bin) and include folders. Before the patch only in cmake default locations
were searched (https://cmake.org/cmake/help/v3.4/command/find_path.html).
Specifying any CLANG_ANALYZER_Z3_PREFIX will force also CLANG_ANALYZER_BUILD_Z3 to ON.
Removed also Z3 4.5 version requirement since it was not checked, and now Clang works with Z3 4.7
Reviewers: NoQ, george.karpenkov, mikhail.ramalho
Reviewed By: george.karpenkov
Subscribers: rnkovacs, NoQ, esteffin, george.karpenkov, delcypher, ddcc, mgorny, xazax.hun, szepet, a.sidorin, Szelethus
Tags: #clang
Differential Revision: https://reviews.llvm.org/D50818
llvm-svn: 344464
The test was failing on e.g. PPC which can't target Windows. Fix by
requiring X86 target in the test. Also, make sure the output goes to a
temporary directory, since CWD may not be writable.
llvm-svn: 344462
The CTPOP case has been changed from VT.getSizeInBits to VT.getScalarSizeInBits - but this fits in with future work for vector support (PR32655) and doesn't affect any current (scalar) uses.
llvm-svn: 344461
Summary:
getShiftAmountTy for X86 returns MVT::i8. If a BSWAP or BITREVERSE is created that requires promotion and the difference between the original VT and the promoted VT is more than 255 then we won't able to create the constant.
This patch adds a check to replace the result from getShiftAmountTy to MVT::i32 if the difference won't fit. This should get legalized later when the shift is ultimately expanded since its clearly an illegal type that we're only promoting to make it a power of 2 bit width. Alternatively we could base the decision completely on the largest shift amount the promoted VT could use.
Vectors should be immune here because getShiftAmountTy always returns the incoming VT for vectors. Only the scalar shift amount can be changed by the targets.
Reviewers: eli.friedman, RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D53232
llvm-svn: 344460
There is one remnant - AVX1 custom splitting of 256-bit vectors - which is due to a regression where the X86ISD::ANDNP is still performed as a YMM.
I've also tightened the CTLZ or CTPOP lowering in SelectionDAGLegalize::ExpandBitCount to require a legal CTLZ - it doesn't affect existing users and fixes an issue with AVX512 codegen.
llvm-svn: 344457
Use isConstantSplat instead of ISD::isConstantSplatVector to let us us peek through to illegal types (in this case for i686 targets to recognise i64 constants)
llvm-svn: 344452
If we have better CTLZ support than CTPOP, then use cttz(x) = width - ctlz(~x & (x - 1)) - and remove the CTTZ_ZERO_UNDEF handling as it no longer gives better codegen.
Similar to rL344447, this is also closer to LegalizeDAG's approach
llvm-svn: 344448
This patch changes the vector CTTZ lowering from:
cttz(x) = ctpop((x & -x) - 1)
to:
cttz(x) = ctpop(~x & (x - 1))
Not only does this make better use of the PANDN instruction, but it also matches the LegalizeDAG method which should allow us to remove the x86 specific code at some point in the future (we need to fix some issues with the bitcasted logic ops and CTPOP lowering first).
Differential Revision: https://reviews.llvm.org/D53214
llvm-svn: 344447
Add shuffle lowering for the case where we can shuffle the lanes into place followed by an in-lane permute.
This is mainly for cases where we can have non-repeating permutes in each lane, but for now I've just enabled it for v4f64 unary shuffles to fix PR39161 - there is no test coverage for other shuffles that might benefit yet.
We now have several cross-lane shuffle lowering methods that all do something similar - I've looked at merging some of these (notably by making the repeated mask mechanism in lowerVectorShuffleByMerging128BitLanes optional), but there is a lot of assertions/assumptions in the way that makes this tricky - I ended up going for adding yet another relatively simple method instead.
Differential Revision: https://reviews.llvm.org/D53148
llvm-svn: 344446
Checking whether a functions throws indirectly may be very expensive because it
needs to visit its whole call graph. Therefore we should first check whether the
function is forbidden to throw and only check whether it throws afterward. This
also seems to solve bug https://bugs.llvm.org/show_bug.cgi?id=39167 where the
execution time is so long that it seems to hang.
Differential Revision: https://reviews.llvm.org/D53187
llvm-svn: 344444
In earlier Clang Static Analyzer versions `check::Bind() was not invoked for
parameter passing, so we needed a trick which is not needed anymore. However
add the tests to ensure its working.
Differential Revision: https::/reviews.llvm.org/D32906
llvm-svn: 344443
And also enable it by default to be consistent with e.g. modernize-use-using.
This improves consistency inside the check itself as well: both checks are now
disabled in macros by default.
This helps e.g. when running this check on client code where the macro is
provided by the system, so there is no easy way to modify it.
Reviewed By: alexfh
Differential Revision: https://reviews.llvm.org/D53217
llvm-svn: 344440
Summary:
AArch64 can fold some shift+extend operations on the RHS operand of
comparisons, so swap the operands if that makes sense.
This provides a fix for https://bugs.llvm.org/show_bug.cgi?id=38751
Reviewers: efriedma, t.p.northover, javed.absar
Subscribers: mcrosier, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D53067
llvm-svn: 344439