Summary:
Before this change, LLVM would always describe locals on the stack as
being relative to some specific register, RSP, ESP, EBP, ESI, etc.
Variables in stack memory are pretty common, so there is a special
S_DEFRANGE_FRAMEPOINTER_REL symbol for them. This change uses it to
reduce the size of our debug info.
On top of the size savings, there are cases on 32-bit x86 where local
variables are addressed from ESP, but ESP changes across the function.
Unlike in DWARF, there is no FPO data to describe the stack adjustments
made to push arguments onto the stack and pop them off after the call,
which makes it hard for the debugger to find the local variables in
frames further up the stack.
To handle this, CodeView has a special VFRAME register, which
corresponds to the $T0 variable set by our FPO data in 32-bit. Offsets
to local variables are instead relative to this value.
This is part of PR38857.
Reviewers: hans, zturner, javed.absar
Subscribers: aprantl, hiraditya, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D52217
llvm-svn: 343543
Now that we create the label at the point of the directive, we don't
need to set the "current CV location", and then later when we emit the
next instruction, create a label for it and emit it.
DWARF still defers the labels used in .debug_loc until the next
instruction or value, for reasons unknown.
llvm-svn: 340883
Fix a set of related bugs:
* Considering two locations as equivalent when their lines are the same
but their scopes are different causes erroneous debug info that
attributes a commoned call to be attributed to one of the two calls it
was commoned from.
* The previous code to compute a new location's scope was inaccurate and
would use the inlinedAt that was the /parent/ of the inlinedAt that is
the nearest common one, and also used that parent scope instead of the
nearest common scope.
* Not generating new locations generally seemed like a lower quality
choice
There was some risk that generating more new locations could hurt object
size by making more fine grained line table entries, but it looks like
that was offset by the decrease in line table (& address & ranges) size
caused by more accurately computing the scope - which likely lead to
fewer range entries (more contiguous ranges) & reduced size that way.
All up with these changes I saw minor reductions (-1.21%, -1.77%) in
.rela.debug_ranges and .rela.debug_addr (in a fission, compressed debug
info build) as well as other minor size changes (generally reductinos)
across the board (-1.32% debug_info.dwo, -1.28% debug_loc.dwo). Measured
in an optimized (-O2) build of the clang binary.
If you are investigating a size regression in an optimized debug builds,
this is certainly a patch to look into - and I'd be happy to look into
any major regressions found & see what we can do to address them.
llvm-svn: 340583
Summary:
This prefix was added in r333421, and it changed our dumper output to
say things like "CVRegEAX" instead of just "EAX". That's a functional
change that I'd rather avoid.
I tested GCC, Clang, and MSVC, and all of them support #pragma
push_macro. They don't issue warnings whem the macro is not defined
either.
I don't have a Mac so I can't test the real termios.h header, but I
looked at the termios.h sources online and looked for other conflicts.
I saw only the CR* macros, so those are the ones we work around.
Reviewers: zturner, JDevlieghere
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D50851
llvm-svn: 339907
In order to set breakpoints on labels and list source code around
labels, we need collect debug information for labels, i.e., label
name, the function label belong, line number in the file, and the
address label located. In order to keep these information in LLVM
IR and to allow backend to generate debug information correctly.
We create a new kind of metadata for labels, DILabel. The format
of DILabel is
!DILabel(scope: !1, name: "foo", file: !2, line: 3)
We hope to keep debug information as much as possible even the
code is optimized. So, we create a new kind of intrinsic for label
metadata to avoid the metadata is eliminated with basic block.
The intrinsic will keep existing if we keep it from optimized out.
The format of the intrinsic is
llvm.dbg.label(metadata !1)
It has only one argument, that is the DILabel metadata. The
intrinsic will follow the label immediately. Backend could get the
label metadata through the intrinsic's parameter.
We also create DIBuilder API for labels to be used by Frontend.
Frontend could use createLabel() to allocate DILabel objects, and use
insertLabel() to insert llvm.dbg.label intrinsic in LLVM IR.
Differential Revision: https://reviews.llvm.org/D45024
Patch by Hsiangkai Wang.
llvm-svn: 331841
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
Summary:
We already have information about static alloca stack locations in our
side table. Emitting instructions for them is inefficient, and it only
happens when the address of the alloca has been materialized within the
current block, which isn't often.
Reviewers: aprantl, probinson, dblaikie
Subscribers: jfb, dschuff, sbc100, jgravelle-google, hiraditya, llvm-commits, aheejin
Differential Revision: https://reviews.llvm.org/D36117
llvm-svn: 309729
When the first instruction of a basic block has no location (consider a
LEA materializing the address of an alloca for a call), we want to start
the line table for the block with the first valid source location in the
block. We need to ignore DBG_VALUE instructions during this scan to get
decent line tables.
llvm-svn: 309628
Avoid duplicating DictScope with hand-written names everywhere. Print
the S_-prefixed symbol kind for every record. This should make it easier
to search for certain kinds of records when debugging PDB linking.
llvm-svn: 307732
If the instructions at the beginning of the block have no location,
we're better off using the location of the first instruction in the
current basic block. At the very least, that instruction post-dominates
this one, whereas if we don't emit a .cv_loc directive, we end up using
the potentially invalid location that falls through from the previous
block.
We could probably do better here by emitting some kind of ".cv_loc end"
directive that stops the line table entry of the previous .cv_loc
directive from bleeding out of its basic block. This would improve the
line table when an entire MBB has no valid location info.
llvm-svn: 306889
This reverts commit r302461.
It appears to be causing failures compiling gtest with debug info on the
Linux sanitizer bot. I was unable to reproduce the failure locally,
however.
llvm-svn: 302504
Summary:
An llvm.dbg.declare of a static alloca is always added to the
MachineFunction dbg variable map, so these values are entirely
redundant. They survive all the way through codegen to be ignored by
DWARF emission.
Effectively revert r113967
Two bugpoint-reduced test cases from 2012 broke as a result of this
change. Despite my best efforts, I haven't been able to rewrite the test
case using dbg.value. I'm not too concerned about the lost coverage
because these were reduced from the test-suite, which we still run.
Reviewers: aprantl, dblaikie
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32920
llvm-svn: 302461
This reapplies revision 285093. Original commit message:
The branch folding pass tail merges blocks into a common-tail. However, the
tail retains the debug information from one of the original inputs to the
merge (chosen randomly). This is a problem for sampled-based PGO, as hits
on the common-tail will be attributed to whichever block was chosen,
irrespective of which path was actually taken to the common-tail.
This patch fixes the issue by nulling the debug location for the common-tail.
Differential Revision: https://reviews.llvm.org/D25742
llvm-svn: 285212
This reverts r285093, as it caused unexpected buildbot failures on
clang-ppc64le-linux, clang-ppc64be-linux, clang-ppc64be-linux-multistage
and clang-ppc64be-linux-lnt. Failing test ubsan/TestCases/TypeCheck/vptr.cpp.
llvm-svn: 285110
The branch folding pass tail merges blocks into a common-tail. However, the
tail retains the debug information from one of the original inputs to the
merge (chosen randomly). This is a problem for sampled-based PGO, as hits
on the common-tail will be attributed to whichever block was chosen,
irrespective of which path was actually taken to the common-tail.
This patch fixes the issue by nulling the debug location for the common-tail.
Differential Revision: https://reviews.llvm.org/D25742
llvm-svn: 285093
Summary:
Previously we were trying to represent this with the "contains" list of
the .cv_inline_linetable directive, which was not enough information.
Now we directly represent the chain of inlined call sites, so we know
what location to emit when we encounter a .cv_loc directive of an inner
inlined call site while emitting the line table of an outer function or
inlined call site. Fixes PR29146.
Also fixes PR29147, where we would crash when .cv_loc directives crossed
sections. Now we write down the section of the first .cv_loc directive,
and emit an error if any other .cv_loc directive for that function is in
a different section.
Also fixes issues with discontiguous inlined source locations, like in
this example:
volatile int unlikely_cond = 0;
extern void __declspec(noreturn) abort();
__forceinline void f() {
if (!unlikely_cond) abort();
}
int main() {
unlikely_cond = 0;
f();
unlikely_cond = 0;
}
Previously our tables gave bad location information for the 'abort'
call, and the debugger wouldn't snow the inlined stack frame for 'f'.
It is important to emit good line tables for this code pattern, because
it comes up whenever an asan bug occurs in an inlined function. The
__asan_report* stubs are generally placed after the normal function
epilogue, leading to discontiguous regions of inlined code.
Reviewers: majnemer, amccarth
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D24014
llvm-svn: 280822
Summary: The code generation should be independent of the debug info.
Reviewers: zansari, davidxl, mkuper, majnemer
Subscribers: majnemer, llvm-commits
Differential Revision: http://reviews.llvm.org/D21911
llvm-svn: 274357
Currently each Function points to a DISubprogram and DISubprogram has a
scope field. For member functions the scope is a DICompositeType. DIScopes
point to the DICompileUnit to facilitate type uniquing.
Distinct DISubprograms (with isDefinition: true) are not part of the type
hierarchy and cannot be uniqued. This change removes the subprograms
list from DICompileUnit and instead adds a pointer to the owning compile
unit to distinct DISubprograms. This would make it easy for ThinLTO to
strip unneeded DISubprograms and their transitively referenced debug info.
Motivation
----------
Materializing DISubprograms is currently the most expensive operation when
doing a ThinLTO build of clang.
We want the DISubprogram to be stored in a separate Bitcode block (or the
same block as the function body) so we can avoid having to expensively
deserialize all DISubprograms together with the global metadata. If a
function has been inlined into another subprogram we need to store a
reference the block containing the inlined subprogram.
Attached to https://llvm.org/bugs/show_bug.cgi?id=27284 is a python script
that updates LLVM IR testcases to the new format.
http://reviews.llvm.org/D19034
<rdar://problem/25256815>
llvm-svn: 266446
Summary:
Refactor common value, scope, and label tracking logic out of DwarfDebug
into a common base class called DebugHandlerBase.
Update an old LLVM IR test case to avoid an assertion in LexicalScopes.
Reviewers: dblaikie, majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D16931
llvm-svn: 260432