There are two reasons why users might want to build libfuzzer:
- To fuzz LLVM itself
- To get the libFuzzer.a archive file, so that they can attach it to their code
This change always builds libfuzzer, and supports the second use case if the specified flag is set.
The point of this patch is to have something that can potentially be shipped with the compiler, and this also ensures that the version of libFuzzer is correct to use with that compiler.
Patch by George Karpenkov.
Differential Revision: https://reviews.llvm.org/D32096
llvm-svn: 301010
Old Apple compilers do not support thread_local keyword. This patch adds -Dthread_local=__thread when the compiler doesn't support thread_local.
Differential Revision: https://reviews.llvm.org/D32312
llvm-svn: 301007
Factor out the common code used for generating addresses into common
templated functions that call overloaded versions of a new function,
getTargetNode.
Tested with make check-llvm with targets AArch64.
Differential Revision: https://reviews.llvm.org/D32169
llvm-svn: 301005
This marks the beginning of an effort to port remaining
MSVC toolchain miscellaneous utilities to all platforms.
Currently clang-cl shells out to certain additional tools
such as the IDL compiler, resource compiler, and a few
other tools, but as these tools are Windows-only it
limits the ability of clang to target Windows on other
platforms. having a full suite of these tools directly
in LLVM should eliminate this constraint.
The current implementation provides no actual functionality,
it is just an empty skeleton executable for the purposes
of making incremental changes.
Differential Revision: https://reviews.llvm.org/D32095
Patch by Eric Beckmann (ecbeckmann@google.com)
llvm-svn: 301004
DAG combine was mistakenly assuming that the step-up it was looking at was
always a doubling, but it can sometimes be a larger extension in which case
we'd crash.
llvm-svn: 301002
Older compilers (e.g. LLVM 3.4) do not support the attribute target("popcnt").
In order to support those, this diff check the attribute support using the preprocessor.
Patch by George Karpenkov.
Differential Revision: https://reviews.llvm.org/D32311
llvm-svn: 300999
Currently sle and ule have to call slt/ult and eq to get the proper answer. This results in extra code for both calls and additional scans of multiword APInts.
This patch replaces slt/ult with a compareSigned/compare that can return -1, 0, or 1 so we can cover all the comparison functions with a single call.
While I was there I removed the activeBits calls and other checks at the start of the slow part of ult. Both of the activeBits calls potentially scan through each of the APInts separately. I can't imagine that's any better than just scanning them in parallel and doing the compares. Now we just share the code with tcCompare.
These changes seem to be good for about a 7-8k reduction on the size of the opt binary on my local x86-64 build.
Differential Revision: https://reviews.llvm.org/D32339
llvm-svn: 300995
Summary:
The SelectionDAG importer now imports rules with Predicate's attached via
Requires, PredicateControl, etc. These predicates are implemented as
bitset's to allow multiple predicates to be tested together. However,
unlike the MC layer subtarget features, each target only pays for it's own
predicates (e.g. AArch64 doesn't have 192 feature bits just because X86
needs a lot).
Both AArch64 and X86 derive at least one predicate from the MachineFunction
or Function so they must re-initialize AvailableFeatures before each
function. They also declare locals in <Target>InstructionSelector so that
computeAvailableFeatures() can use the code from SelectionDAG without
modification.
Reviewers: rovka, qcolombet, aditya_nandakumar, t.p.northover, ab
Reviewed By: rovka
Subscribers: aemerson, rengolin, dberris, kristof.beyls, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D31418
llvm-svn: 300993
Currently we choose PostBB as the single successor of QFB, but its possible that QTB's single successor is QFB which would make QFB the correct choice.
Differential Revision: https://reviews.llvm.org/D32323
llvm-svn: 300992
places based on it.
Existing constant hoisting pass will merge a group of contants in a small range
and hoist the const materialization code to the common dominator of their uses.
However, if the uses are all in cold pathes, existing implementation may hoist
the materialization code from cold pathes to a hot place. This may hurt performance.
The patch introduces BFI to the pass and selects the best insertion places based
on it.
The change is controlled by an option consthoist-with-block-frequency which is
off by default for now.
Differential Revision: https://reviews.llvm.org/D28962
llvm-svn: 300989
This revision documents the combination of C++ and table-gen code that
handles relocations and addresses.
Thanks for Simon Dardis for the careful reviews.
Differential Revision: https://reviews.llvm.org/D31628
llvm-svn: 300986
Phi nodes in non-header blocks are converted to select instructions after
if-conversion. This patch updates the cost model to account for the selects.
Differential Revision: https://reviews.llvm.org/D31906
llvm-svn: 300980
It's causing llvm-clang-x86_64-expensive-checks-win to fail to compile and I
haven't worked out why. Reverting to make it green while I figure it out.
llvm-svn: 300978
Select them as copies. We only select if both the source and the
destination are on the same register bank, so this shouldn't cause any
trouble.
llvm-svn: 300971
This should fix llvm-clang-x86_64-expensive-checks-win
I reproduced the error using the following code:
namespace llvm {
// Moving this out of the llvm namespace fixes the error.
template<unsigned NumBits> class PredicateBitsetImpl {};
}
namespace {
const unsigned MAX_SUBTARGET_PREDICATES = 11;
// This works on Clang but is broken on MSVC
// using PredicateBitset = PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;
// Some versions emit a syntax error here ("error C2061: syntax error: identifier
// 'PredicateBitsetImpl'") but others accept it and only emit the C3646 below.
//
// This works on Clang and MSVC
using PredicateBitset = llvm::PredicateBitsetImpl<MAX_SUBTARGET_PREDICATES>;
class Foo {
private:
PredicateBitset A; // error C3646: 'A': unknown override specifier
};
}
llvm-svn: 300970
The condition in isSupportedType didn't handle struct/array arguments
properly. Fix the check and add a test to make sure we use the fallback
path in this kind of situation. The test deals with some common cases
where the call lowering should error out. There are still some issues
here that need to be addressed (tail calls come to mind), but they can
be addressed in other patches.
llvm-svn: 300967
Summary:
The SelectionDAG importer now imports rules with Predicate's attached via
Requires, PredicateControl, etc. These predicates are implemented as
bitset's to allow multiple predicates to be tested together. However,
unlike the MC layer subtarget features, each target only pays for it's own
predicates (e.g. AArch64 doesn't have 192 feature bits just because X86
needs a lot).
Both AArch64 and X86 derive at least one predicate from the MachineFunction
or Function so they must re-initialize AvailableFeatures before each
function. They also declare locals in <Target>InstructionSelector so that
computeAvailableFeatures() can use the code from SelectionDAG without
modification.
Reviewers: rovka, qcolombet, aditya_nandakumar, t.p.northover, ab
Reviewed By: rovka
Subscribers: aemerson, rengolin, dberris, kristof.beyls, llvm-commits, igorb
Differential Revision: https://reviews.llvm.org/D31418
llvm-svn: 300964
when the subtarget has fast strings.
This has two advantages:
- Speed is improved. For example, on Haswell thoughput improvements increase
linearly with size from 256 to 512 bytes, after which they plateau:
(e.g. 1% for 260 bytes, 25% for 400 bytes, 40% for 508 bytes).
- Code is much smaller (no need to handle boundaries).
llvm-svn: 300957
This is splitted from D32228,
currently DWARF parsers code has few places that applied relocations values manually.
These places has similar duplicated code. Patch introduces separate method that can be
used to obtain relocated value. That helps to reduce code and simplifies things.
Differential revision: https://reviews.llvm.org/D32284
llvm-svn: 300956
- Mark an internal function static
- Remove the llvm namespace (just holding on to the `using namespace
llvm;` Works on My Machine(TM))
llvm-svn: 300947
CodeExtractor looks up the dominator node corresponding to return blocks
when splitting them. If one of these blocks is unreachable, there's no
node in the Dom and CodeExtractor crashes because it doesn't check
for domtree node validity.
In theory, we could add just a check for skipping null DTNodes in
`splitReturnBlock` but the fix I propose here is slightly different. To the
best of my knowledge, unreachable blocks are irrelevant for the algorithm,
therefore we can just skip them when building the candidate set in the
constructor.
Differential Revision: https://reviews.llvm.org/D32335
llvm-svn: 300946
This should fix the bug https://bugs.llvm.org/show_bug.cgi?id=12906
To print the FP constant AsmWriter does the following:
1) convert FP value to String (actually using snprintf function which is locale dependent).
2) Convert String back to FP Value
3) Compare original and got FP values. If they are not equal just dump as hex.
The problem happens on the 2nd step when APFloat does not expect group delimiter or
fraction delimiter other than period symbol and so on, which can be produced on the
first step if LLVM library is used in an environment with corresponding locale set.
To fix this issue the locale independent APFloat:toString function is used.
However it prints FP values slightly differently than snprintf does. Specifically
it suppress trailing zeros in significant, use capital E and so on.
It results in 117 test failures during make check.
To avoid this I've also updated APFloat.toString a bit to pass make check at least.
Reviewers: sberg, bogner, majnemer, sanjoy, timshen, rnk
Reviewed By: timshen, rnk
Subscribers: rnk, llvm-commits
Differential Revision: https://reviews.llvm.org/D32276
llvm-svn: 300943
It seems that r300930 was creating an infinite loop in dag-combine when
compling the following file:
MultiSource/Benchmarks/MiBench/consumer-typeset/z21.c
llvm-svn: 300940
immediate operands.
This commit adds an AArch64 dag-combine that optimizes code generation
for logical instructions taking immediate operands. The optimization
uses demanded bits to change a logical instruction's immediate operand
so that the immediate can be folded into the immediate field of the
instruction.
This recommits r300913, which broke bots because I didn't fix a call to
ShrinkDemandedConstant in SIISelLowering.cpp after changing the APIs of
TargetLoweringOpt and TargetLowering.
rdar://problem/18231627
Differential Revision: https://reviews.llvm.org/D5591
llvm-svn: 300930