Summary:
When we do `ConstantExpr::getZExt()`, that "extends" `undef` to `0`,
which means that for patterns a/b we'd assume that we must not produce
any bits for that channel, while in reality we simply didn't care
about that channel - i.e. we don't need to mask it.
Reviewers: spatel
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68239
llvm-svn: 373960
Initially (D65380) i believed that if we have rightshift-trunc-rightshift,
we can't do any folding. But as it usually happens, i was wrong.
https://rise4fun.com/Alive/GEwhttps://rise4fun.com/Alive/gN2O
In https://bugs.llvm.org/show_bug.cgi?id=43564 we happen to have
this very sequence, of two right shifts separated by trunc.
And "just" so that happens, we apparently can fold the pattern
if the total shift amount is either 0, or it's equal to the bitwidth
of the innermost widest shift - i.e. if we are left with only the
original sign bit. Which is exactly what is wanted there.
llvm-svn: 373801
https://rise4fun.com/Alive/8BY - valid for lshr+trunc+variable sext
https://rise4fun.com/Alive/7jk - the variable sext can be redundant
https://rise4fun.com/Alive/Qslu - 'exact'-ness of first shift can be preserver
https://rise4fun.com/Alive/IF63 - without trunc we could view this as
more general "drop redundant mask before right-shift",
but let's handle it here for now
https://rise4fun.com/Alive/iip - likewise, without trunc, variable sext can be redundant.
There's more patterns for sure - e.g. we can have 'lshr' as the final shift,
but that might be best handled by some more generic transform, e.g.
"drop redundant masking before right-shift" (PR42456)
I'm singling-out this sext patch because you can only extract
high bits with `*shr` (unlike abstract bit masking),
and i *know* this fold is wanted by existing code.
I don't believe there is much to review here,
so i'm gonna opt into post-review mode here.
https://bugs.llvm.org/show_bug.cgi?id=43523
llvm-svn: 373542
Summary:
This is valid for any `sext` bitwidth pair:
```
Processing /tmp/opt.ll..
----------------------------------------
%signed = sext %y
%r = shl %x, %signed
ret %r
=>
%unsigned = zext %y
%r = shl %x, %unsigned
ret %r
%signed = sext %y
Done: 2016
Optimization is correct!
```
(This isn't so for funnel shifts, there it's illegal for e.g. i6->i7.)
Main motivation is the C++ semantics:
```
int shl(int a, char b) {
return a << b;
}
```
ends as
```
%3 = sext i8 %1 to i32
%4 = shl i32 %0, %3
```
https://godbolt.org/z/0jgqUq
which is, as this shows, too pessimistic.
There is another problem here - we can only do the fold
if sext is one-use. But we can trivially have cases
where several shifts have the same sext shift amount.
This should be resolved, later.
Reviewers: spatel, nikic, RKSimon
Reviewed By: spatel
Subscribers: efriedma, hiraditya, nlopes, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68103
llvm-svn: 373106
Summary:
If we have a pattern `(x & (-1 >> maskNbits)) << shiftNbits`,
we already know (have a fold) that will drop the `& (-1 >> maskNbits)`
mask iff `(shiftNbits-maskNbits) s>= 0` (i.e. `shiftNbits u>= maskNbits`).
So even if `(shiftNbits-maskNbits) s< 0`, we can still
fold, we will just need to apply a **constant** mask afterwards:
```
Name: c, normal+mask
%t0 = lshr i32 -1, C1
%t1 = and i32 %t0, %x
%r = shl i32 %t1, C2
=>
%n0 = shl i32 %x, C2
%n1 = i32 ((-(C2-C1))+32)
%n2 = zext i32 %n1 to i64
%n3 = lshr i64 -1, %n2
%n4 = trunc i64 %n3 to i32
%r = and i32 %n0, %n4
```
https://rise4fun.com/Alive/gslRa
Naturally, old `%masked` will have to be one-use.
This is not valid for pattern f - where "masking" is done via `ashr`.
https://bugs.llvm.org/show_bug.cgi?id=42563
Reviewers: spatel, nikic, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67725
llvm-svn: 372630
Summary:
And this is **finally** the interesting part of that fold!
If we have a pattern `(x & (~(-1 << maskNbits))) << shiftNbits`,
we already know (have a fold) that will drop the `& (~(-1 << maskNbits))`
mask iff `(maskNbits+shiftNbits) u>= bitwidth(x)`.
But that is actually ignorant, there's more general fold here:
In this pattern, `(maskNbits+shiftNbits)` actually correlates
with the number of low bits that will remain in the final value.
So even if `(maskNbits+shiftNbits) u< bitwidth(x)`, we can still
fold, we will just need to apply a **constant** mask afterwards:
```
Name: a, normal+mask
%onebit = shl i32 -1, C1
%mask = xor i32 %onebit, -1
%masked = and i32 %mask, %x
%r = shl i32 %masked, C2
=>
%n0 = shl i32 %x, C2
%n1 = add i32 C1, C2
%n2 = zext i32 %n1 to i64
%n3 = shl i64 -1, %n2
%n4 = xor i64 %n3, -1
%n5 = trunc i64 %n4 to i32
%r = and i32 %n0, %n5
```
https://rise4fun.com/Alive/F5R
Naturally, old `%masked` will have to be one-use.
Similar fold exists for patterns c,d,e, will post patch later.
https://bugs.llvm.org/show_bug.cgi?id=42563
Reviewers: spatel, nikic, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67677
llvm-svn: 372629
This reverts commit 5dbb90bfe1.
As noted in the post-commit thread for r367891, this can create
a multiply that is lowered to a libcall that may not exist.
We need to improve the backend decomposition for integer multiply
before trying to re-land this (if it's still worthwhile after
doing the backend work).
llvm-svn: 369174
This was initially committed in r368059 but got reverted in r368084
because there was a faulty logic in how the shift amounts type mismatch
was being handled (it simply wasn't).
I've added an explicit bailout before we SimplifyAddInst() - i don't think
it's designed in general to handle differently-typed values, even though
the actual problem only comes from ConstantExpr's.
I have also changed the common type deduction, to not just blindly
look past zext, but try to do that so that in the end types match.
Differential Revision: https://reviews.llvm.org/D65380
llvm-svn: 368141
This reverts r368059 (git commit 0f95710976)
This caused Clang to assert while self-hosting and compiling
SystemZInstrInfo.cpp. Reduction is running.
llvm-svn: 368084
Summary:
Currently `reassociateShiftAmtsOfTwoSameDirectionShifts()` only handles
two shifts one after another. If the shifts are `shl`, we still can
easily perform the fold, with no extra legality checks:
https://rise4fun.com/Alive/OQbM
If we have right-shift however, we won't be able to make it
any simpler than it already is.
After this the only thing missing here is constant-folding: (`NewShAmt >= bitwidth(X)`)
* If it's a logical shift, then constant-fold to `0` (not `undef`)
* If it's a `ashr`, then a splat of original signbit
https://rise4fun.com/Alive/E1Khttps://rise4fun.com/Alive/i0V
Reviewers: spatel, nikic, xbolva00
Reviewed By: spatel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65380
llvm-svn: 368059
This appears to slightly help patterns similar to what's
shown in PR42874:
https://bugs.llvm.org/show_bug.cgi?id=42874
...but not in the way requested.
That fix will require some later IR and/or backend pass to
decompose multiply/shifts into something more optimal per
target. Those transforms already exist in some basic forms,
but probably need enhancing to catch more cases.
https://rise4fun.com/Alive/Qzv2
llvm-svn: 367891
Summary:
If we have some pattern that leaves only some low bits set, and then performs
left-shift of those bits, if none of the bits that are left after the final
shift are modified by the mask, we can omit the mask.
There are many variants to this pattern:
f. `((x << MaskShAmt) a>> MaskShAmt) << ShiftShAmt`
All these patterns can be simplified to just:
`x << ShiftShAmt`
iff:
f. `(ShiftShAmt-MaskShAmt) s>= 0` (i.e. `ShiftShAmt u>= MaskShAmt`)
Normally, the inner pattern is sign-extend,
but for our purposes it's no different to other patterns:
alive proofs:
f: https://rise4fun.com/Alive/7U3
For now let's start with patterns where both shift amounts are variable,
with trivial constant "offset" between them, since i believe this is
both simplest to handle and i think this is most common.
But again, there are likely other variants where we could use
ValueTracking/ConstantRange to handle more cases.
https://bugs.llvm.org/show_bug.cgi?id=42563
Differential Revision: https://reviews.llvm.org/D64524
llvm-svn: 366540
Summary:
If we have some pattern that leaves only some low bits set, and then performs
left-shift of those bits, if none of the bits that are left after the final
shift are modified by the mask, we can omit the mask.
There are many variants to this pattern:
e. `((x << MaskShAmt) l>> MaskShAmt) << ShiftShAmt`
All these patterns can be simplified to just:
`x << ShiftShAmt`
iff:
e. `(ShiftShAmt-MaskShAmt) s>= 0` (i.e. `ShiftShAmt u>= MaskShAmt`)
alive proofs:
e: https://rise4fun.com/Alive/0FT
For now let's start with patterns where both shift amounts are variable,
with trivial constant "offset" between them, since i believe this is
both simplest to handle and i think this is most common.
But again, there are likely other variants where we could use
ValueTracking/ConstantRange to handle more cases.
https://bugs.llvm.org/show_bug.cgi?id=42563
Differential Revision: https://reviews.llvm.org/D64521
llvm-svn: 366539
Summary:
If we have some pattern that leaves only some low bits set, and then performs
left-shift of those bits, if none of the bits that are left after the final
shift are modified by the mask, we can omit the mask.
There are many variants to this pattern:
d. `(x & ((-1 << MaskShAmt) >> MaskShAmt)) << ShiftShAmt`
All these patterns can be simplified to just:
`x << ShiftShAmt`
iff:
d. `(ShiftShAmt-MaskShAmt) s>= 0` (i.e. `ShiftShAmt u>= MaskShAmt`)
alive proofs:
d: https://rise4fun.com/Alive/I5Y
For now let's start with patterns where both shift amounts are variable,
with trivial constant "offset" between them, since i believe this is
both simplest to handle and i think this is most common.
But again, there are likely other variants where we could use
ValueTracking/ConstantRange to handle more cases.
https://bugs.llvm.org/show_bug.cgi?id=42563
Differential Revision: https://reviews.llvm.org/D64519
llvm-svn: 366538
Summary:
If we have some pattern that leaves only some low bits set, and then performs
left-shift of those bits, if none of the bits that are left after the final
shift are modified by the mask, we can omit the mask.
There are many variants to this pattern:
c. `(x & (-1 >> MaskShAmt)) << ShiftShAmt`
All these patterns can be simplified to just:
`x << ShiftShAmt`
iff:
c. `(ShiftShAmt-MaskShAmt) s>= 0` (i.e. `ShiftShAmt u>= MaskShAmt`)
alive proofs:
c: https://rise4fun.com/Alive/RgJh
For now let's start with patterns where both shift amounts are variable,
with trivial constant "offset" between them, since i believe this is
both simplest to handle and i think this is most common.
But again, there are likely other variants where we could use
ValueTracking/ConstantRange to handle more cases.
https://bugs.llvm.org/show_bug.cgi?id=42563
Differential Revision: https://reviews.llvm.org/D64517
llvm-svn: 366537
Summary:
If we have some pattern that leaves only some low bits set, and then performs
left-shift of those bits, if none of the bits that are left after the final
shift are modified by the mask, we can omit the mask.
There are many variants to this pattern:
b. `(x & (~(-1 << maskNbits))) << shiftNbits`
All these patterns can be simplified to just:
`x << ShiftShAmt`
iff:
b. `(MaskShAmt+ShiftShAmt) u>= bitwidth(x)`
alive proof:
b: https://rise4fun.com/Alive/y8M
For now let's start with patterns where both shift amounts are variable,
with trivial constant "offset" between them, since i believe this is
both simplest to handle and i think this is most common.
But again, there are likely other variants where we could use
ValueTracking/ConstantRange to handle more cases.
https://bugs.llvm.org/show_bug.cgi?id=42563
Differential Revision: https://reviews.llvm.org/D64514
llvm-svn: 366536
Summary:
If we have some pattern that leaves only some low bits set, and then performs
left-shift of those bits, if none of the bits that are left after the final
shift are modified by the mask, we can omit the mask.
There are many variants to this pattern:
a. `(x & ((1 << MaskShAmt) - 1)) << ShiftShAmt`
All these patterns can be simplified to just:
`x << ShiftShAmt`
iff:
a. `(MaskShAmt+ShiftShAmt) u>= bitwidth(x)`
alive proof:
a: https://rise4fun.com/Alive/wi9
Indeed, not all of these patterns are canonical.
But since this fold will only produce a single instruction
i'm really interested in handling even uncanonical patterns,
since i have this general kind of pattern in hotpaths,
and it is not totally outlandish for bit-twiddling code.
For now let's start with patterns where both shift amounts are variable,
with trivial constant "offset" between them, since i believe this is
both simplest to handle and i think this is most common.
But again, there are likely other variants where we could use
ValueTracking/ConstantRange to handle more cases.
https://bugs.llvm.org/show_bug.cgi?id=42563
Reviewers: spatel, nikic, huihuiz, xbolva00
Reviewed By: xbolva00
Subscribers: efriedma, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64512
llvm-svn: 366535
I was actually wondering if there was some nicer way than m_Value()+cast,
but apparently what i was really "subconsciously" thinking about
was correctness issue.
hasNoUnsignedWrap()/hasNoUnsignedWrap() exist for Instruction,
not for BinaryOperator, so let's just use m_Instruction(),
thus both avoiding a cast, and a crash.
Fixes https://bugs.llvm.org/show_bug.cgi?id=42484,
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=15587
llvm-svn: 364915
Summary:
In D61918 i was looking at dropping it in DAGCombiner `visitShiftByConstant()`,
but as @craig.topper pointed out, it was copied from here.
That check claims that the transform is illegal otherwise.
That isn't true:
1. For `ISD::ADD`, we only process `ISD::SHL` outer shift => sign bit does not matter
https://rise4fun.com/Alive/K4A
2. For `ISD::AND`, there is no restriction on constants:
https://rise4fun.com/Alive/Wy3
3. For `ISD::OR`, there is no restriction on constants:
https://rise4fun.com/Alive/GOH
3. For `ISD::XOR`, there is no restriction on constants:
https://rise4fun.com/Alive/ml6
So, why is it there then?
As far as i can tell, it dates all the way back to original check-in rL7793.
I think we should just drop it.
Reviewers: spatel, craig.topper, efriedma, majnemer
Reviewed By: spatel
Subscribers: llvm-commits, craig.topper
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61938
llvm-svn: 361043
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This is outwardly NFC from what I can tell, but it should be more efficient
to simplify first (despite the name, SimplifyAssociativeOrCommutative does
not actually simplify as InstSimplify does - it creates/morphs instructions).
This should make it easier to refactor duplicated code that runs for all binops.
llvm-svn: 335258
Summary:
Related to https://bugs.llvm.org/show_bug.cgi?id=37793, https://reviews.llvm.org/D46760#1127287
We'd like to do this canonicalization https://rise4fun.com/Alive/Gmc
But it is currently restricted by rL155136 / rL155362, which says:
```
// This is a constant shift of a constant shift. Be careful about hiding
// shl instructions behind bit masks. They are used to represent multiplies
// by a constant, and it is important that simple arithmetic expressions
// are still recognizable by scalar evolution.
//
// The transforms applied to shl are very similar to the transforms applied
// to mul by constant. We can be more aggressive about optimizing right
// shifts.
//
// Combinations of right and left shifts will still be optimized in
// DAGCombine where scalar evolution no longer applies.
```
I think these tests show that for *constants*, SCEV has no issues with that canonicalization.
Reviewers: mkazantsev, spatel, efriedma, sanjoy
Reviewed By: mkazantsev
Subscribers: sanjoy, javed.absar, llvm-commits, stoklund, bixia
Differential Revision: https://reviews.llvm.org/D48229
llvm-svn: 335101
Summary:
We already do it for splat constants, but not just values.
Also, undef cases are mostly non-functional.
The original commit was reverted because
it broke tests for amdgpu backend, which i didn't check.
Now, the backed was updated to recognize these new
patterns, so we are good.
https://bugs.llvm.org/show_bug.cgi?id=37603https://rise4fun.com/Alive/cplX
Reviewers: spatel, craig.topper, mareko, bogner, rampitec, nhaehnle, arsenm
Reviewed By: spatel, rampitec, nhaehnle
Subscribers: wdng, nhaehnle, llvm-commits
Differential Revision: https://reviews.llvm.org/D47980
llvm-svn: 334818
As noted in the review thread for rL333782, we could have
made a bug harder to hit if we were simplifying instructions
before trying other folds.
The shuffle transform in question isn't ever a simplification;
it's just a canonicalization. So I've renamed that to make that
clearer.
This is NFCI at this point, but I've regenerated the test file
to show the cosmetic value naming difference of using
instcombine's RAUW vs. the builder.
Possible follow-ups:
1. Move reassociation folds after simplifies too.
2. Refactor common code; we shouldn't have so much repetition.
llvm-svn: 333820
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Also, rename 'foldOpWithConstantIntoOperand' because that's annoyingly
vague. The constant check is redundant in some cases, but it allows
removing duplication for most of the calls.
llvm-svn: 326329
The hexagon test should be fixed now.
Original commit message:
This pulls shifts through a select+binop with a constant where the select conditionally executes the binop. We already do this for just the binop, but not with the select.
This can allow us to get the select closer to other selects to enable removing one.
Differential Revision: https://reviews.llvm.org/D39222
llvm-svn: 317600
This broke the CodeGen/Hexagon/loop-idiom/pmpy-mod.ll test on a bunch of buildbots.
> This pulls shifts through a select+binop with a constant where the select conditionally executes the binop. We already do this for just the binop, but not with the select.
>
> This can allow us to get the select closer to other selects to enable removing one.
>
> Differential Revision: https://reviews.llvm.org/D39222
>
> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@317510 91177308-0d34-0410-b5e6-96231b3b80d8
llvm-svn: 317518
This pulls shifts through a select+binop with a constant where the select conditionally executes the binop. We already do this for just the binop, but not with the select.
This can allow us to get the select closer to other selects to enable removing one.
Differential Revision: https://reviews.llvm.org/D39222
llvm-svn: 317510
Narrow ops are better for bit-tracking, and in the case of vectors,
may enable better codegen.
As the trunc test shows, this can allow follow-on simplifications.
There's a block of code in visitTrunc that deals with shifted ops
with FIXME comments. It may be possible to remove some of that now,
but I want to make sure there are no problems with this step first.
http://rise4fun.com/Alive/Y3a
Name: hoist_ashr_ahead_of_sext_1
%s = sext i8 %x to i32
%r = ashr i32 %s, 3 ; shift value is < than source bit width
=>
%a = ashr i8 %x, 3
%r = sext i8 %a to i32
Name: hoist_ashr_ahead_of_sext_2
%s = sext i8 %x to i32
%r = ashr i32 %s, 8 ; shift value is >= than source bit width
=>
%a = ashr i8 %x, 7 ; so clamp this shift value
%r = sext i8 %a to i32
Name: junc_the_trunc
%a = sext i16 %v to i32
%s = ashr i32 %a, 18
%t = trunc i32 %s to i16
=>
%t = ashr i16 %v, 15
llvm-svn: 310942
We already support pulling through an add with constant RHS. We can do the same for subtract.
Differential Revision: https://reviews.llvm.org/D36443
llvm-svn: 310407