When a Swift module built with debug info imports a library without
debug info from a textual interface, the textual interface is
necessary to reconstruct types defined in the library's interface. By
recording the Swift interface files in DWARF dsymutil can collect them
and LLDB can find them.
This patch teaches dsymutil to look for DW_TAG_imported_modules and
records all references to parseable Swift ingterfrace files and copies
them to
a.out.dSYM/Contents/Resources/<Arch>/<ModuleName>.swiftinterface
<rdar://problem/49751748>
llvm-svn: 358921
Add support for cloning DWARF expressions that contain base type DIE
references in dsymutil.
<rdar://problem/48167812>
Differential Revision: https://reviews.llvm.org/D58534
llvm-svn: 355148
Dsymutil gets library member information is through the ambiguous
/path/to/archive.a(member.o). The current logic we use would get
confused by additional parentheses. Using rfind mitigates this issue.
llvm-svn: 355114
That patch is the fix for https://bugs.llvm.org/show_bug.cgi?id=40703
"wrong line number info for obj file compiled with -ffunction-sections"
bug. The problem happened with only .o files. If object file contains
several .text sections then line number information showed incorrectly.
The reason for this is that DwarfLineTable could not detect section which
corresponds to specified address(because address is the local to the
section). And as the result it could not select proper sequence in the
line table. The fix is to pass SectionIndex with the address. So that it
would be possible to differentiate addresses from various sections. With
this fix llvm-objdump shows correct line numbers for disassembled code.
Differential review: https://reviews.llvm.org/D58194
llvm-svn: 354972
The DWARF standard says that an empty compile unit is not valid:
> Each such contribution consists of a compilation unit header (see
> Section 7.5.1.1 on page 200) followed by a single DW_TAG_compile_unit or
> DW_TAG_partial_unit debugging information entry, together with its
> children.
Therefore we shouldn't clone them in dsymutil.
Differential revision: https://reviews.llvm.org/D57979
llvm-svn: 353903
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
An assertion was hit when running dsymutil on a gcc generated binary
that contained an empty address range. Address ranges are stored in an
interval map of half open intervals. Since the interval is empty and
therefore meaningless, we simply don't add it to the map.
llvm-svn: 350591
The unobufscation support for BCSymbolMaps was the last piece of code
that hasn't been upstreamed yet. This patch contains a reworked version
of the existing code and relevant tests.
Differential revision: https://reviews.llvm.org/D56346
llvm-svn: 350580
After TimePoint's precision was increased in LLVM we started seeing
failures because the modification times didn't match. This adds a time
cast to ensure that we're comparing TimePoints with the same amount of
precision.
llvm-svn: 348283
Usually local symbols will have their address described in the debug
map. Global symbols have to have their address looked up in the symbol
table of the main executable. By playing with 'ld -r' and export lists,
you can get a symbol described as global by the debug map while actually
being a local symbol as far as the link in concerned. By gathering the
address of local symbols, we fix this issue.
Also, we prefer a global symbol in case of a name collision to preserve
the previous behavior.
Note that using the 'ld -r' tricks, people can actually cause symbol
names collisions that dsymutil has no way to figure out. This fixes the
simple case where there is only one symbol of a given name.
rdar://problem/32826621
Differential revision: https://reviews.llvm.org/D54922
llvm-svn: 348021
LC_BUILD_VERSION contains platform information that is useful for LLDB
to match up dSYM bundles with binaries. This patch copies the load
command over into the dSYM.
rdar://problem/44145175
rdar://problem/45883463
Differential Revision: https://reviews.llvm.org/D54233
llvm-svn: 346412
The purpose of this patch is twofold:
- Fold pre-DWARF v5 functionality into v5 to eliminate the need for 2 different
versions of range list handling. We get rid of DWARFDebugRangelist{.cpp,.h}.
- Templatize the handling of range list tables so that location list handling
can take advantage of it as well. Location list and range list tables have the
same basic layout.
A non-NFC version of this patch was previously submitted with r342218, but it caused
errors with some TSan tests. This patch has no functional changes. The difference to
the non-NFC patch is that there are no changes to rangelist dumping in this patch.
Differential Revision: https://reviews.llvm.org/D53545
llvm-svn: 345546
Before this patch we were returning an empty string in case we couldn't
create the output file. Now we return an expected string so we can
return and print the proper issue. We now return errors instead of bools
and defer printing to the call site.
llvm-svn: 344983
There are a few leftovers in rL343163 which span two lines. This commit
changes these llvm::sort(C.begin(), C.end, ...) to llvm::sort(C, ...)
llvm-svn: 343426
Eliminating some duplication of rangelist dumping code at the expense of
some version-dependent code in dump and extract routines.
Reviewer: dblaikie, JDevlieghere, vleschuk
Differential revision: https://reviews.llvm.org/D51081
llvm-svn: 342048
Before this patch, analyzeContext called getCanonicalDIEOffset(), for
which the result depends on the timings of the setCanonicalDIEOffset()
calls in the cloneLambda. This can lead to slightly different output
between runs due to threading.
To prevent this from happening, we now record the output debug info size
after importing the modules (before any concurrent processing takes
place). This value, named the ModulesEndOffset is used to compare the
canonical DIE offset against. If the value is greater than this offset,
the canonical DIE offset has been updated during cloning, and should
therefore not be considered for pruning.
Differential revision: https://reviews.llvm.org/D51443
llvm-svn: 341649
Keeping the compile units in memory is expensive. For the single
threaded case we allocate them in the analyze part and deallocate them
again once we've finished cloning. This poses a problem in the single
threaded case where we did all the analysis first followed by all the
cloning. This meant we had all the link context in memory right after
analyzing finished.
This patch changes the way we order work in the single threaded case.
Instead of doing all the analysis and cloning in serial, we now
interleave the two so we can deallocate the memory as soon as a file is
processed. The result is binary identical and peak memory usage went
down from 13.43GB to 5.73GB for a debug build of trunk clang.
Differential revision: https://reviews.llvm.org/D51618
llvm-svn: 341568
Also adjust some of dsymutil's headers to put the header guards at the top,
otherwise the compiler will not recognize them as header guards.
llvm-svn: 341323
forward declarations.
Especially with template instantiations, there are legitimate reasons
why for declarations might be emitted into a DW_TAG_module skeleton /
forward-declaration sub-tree, that are not forward declarations in the
sense of that there is a more complete definition over in a .pcm file.
The example in the testcase is a constant DW_TAG_member of a
DW_TAG_class template instatiation.
rdar://problem/43623196
llvm-svn: 341123
This (partially) fixes a regression introduced by
https://reviews.llvm.org/D43945 / r327399, which parallelized
DwarfLinker. This patch avoids parsing and allocating the memory for
all input DIEs up front and instead only allocates them in the
concurrent loop in the AnalyzeLambda. At the end of the loop the
memory from the LinkContext is cleared again.
This reduces the peak memory needed to link the debug info of a
non-modular build of the Swift compiler by >3GB.
rdar://problem/43444464
Differential Revision: https://reviews.llvm.org/D51078
llvm-svn: 340650
Both DWARFDebugLine and DWARFDebugAddr used the same callback mechanism
for handling recoverable errors. They both implemented similar warn() function
to be used as such callbacks.
In this revision we get rid of code duplication and move this warn() function
to DWARFContext as DWARFContext::dumpWarning().
Reviewers: lhames, jhenderson, aprantl, probinson, dblaikie, JDevlieghere
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D51033
llvm-svn: 340528
Summary:
The accelerator tables use the debug_str section to store their strings.
However, they do not support the indirect method of access that is
available for the debug_info section (DW_FORM_strx et al.).
Currently our code is assuming that all strings can/will be referenced
indirectly, and puts all of them into the debug_str_offsets section.
This is generally true for regular (unsplit) dwarf, but in the DWO case,
most of the strings in the debug_str section will only be used from the
accelerator tables. Therefore the contents of the debug_str_offsets
section will be largely unused and bloating the main executable.
This patch rectifies this by teaching the DwarfStringPool to
differentiate between strings accessed directly and indirectly. When a
user inserts a string into the pool it has to declare whether that
string will be referenced directly or not. If at least one user requsts
indirect access, that string will be assigned an index ID and put into
debug_str_offsets table. Otherwise, the offset table is skipped.
This approach reduces the overall binary size (when compiled with
-gdwarf-5 -gsplit-dwarf) in my tests by about 2% (debug_str_offsets is
shrunk by 99%).
Reviewers: probinson, dblaikie, JDevlieghere
Subscribers: aprantl, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D49493
llvm-svn: 339122
The functions `lookForDIEsToKeep` and `keepDIEAndDependencies` can have
some very deep recursion. This tackles part of this problem by removing
the recursion from `lookForDIEsToKeep` by turning it into a worklist.
The difficulty in doing so is the computation of incompleteness, which
depends on the incompleteness of its children. To compute this, we
insert "continuation markers" into the worklist. This informs the work
loop to (re)compute the incompleteness property of the DIE associated
with it (i.e. the parent of the previously processed DIE).
This patch should generate byte-identical output. Unfortunately it also
has some impact of performance, regressing by about 4% when processing
clang on my machine.
Differential revision: https://reviews.llvm.org/D48899
llvm-svn: 338536
Dsymutil's update functionality was broken on Windows because we tried
to rename a file while we're holding open handles to that file. TempFile
provides a solution for this through its keep(Twine) method. This patch
changes dsymutil to make use of that functionality.
Differential revision: https://reviews.llvm.org/D49860
llvm-svn: 338216
This patch add support for emitting DWARF5 accelerator tables
(.debug_names) from dsymutil. Just as with the Apple style accelerator
tables, it's possible to update existing dSYMs. This patch includes a
test that show how you can convert back and forth between the two types.
If no kind of table is specified, dsymutil will default to generating
Apple-style accelerator tables whenever it finds those in its input. The
same is true when there are no accelerator tables at all. Finally, in
the remaining case, where there's at least one DWARF v5 table and no
Apple ones, the output will contains a DWARF accelerator tables
(.debug_names).
Differential revision: https://reviews.llvm.org/D49137
llvm-svn: 337980
When manually finishing the object writer in dsymutil, it's possible
that there are pending labels that haven't been resolved. This results
in an assertion when the assembler tries to fixup a label that doesn't
have an address yet.
Differential revision: https://reviews.llvm.org/D49131
llvm-svn: 336688
When implementing the DWARF accelerator tables in dsymutil I ran into an
assertion in the assembler. Debugging these kind of issues is a lot
easier when looking at the assembly instead of debugging the assembler
itself. Since it's only a matter of creating an AsmStreamer instead of a
MCObjectStreamer it made sense to turn this into a (hidden) dsymutil
feature.
Differential revision: https://reviews.llvm.org/D49079
llvm-svn: 336561
When emitting a CU, store the MCSymbol pointing to the beginning of the
CU. We'll need this information later when emitting the .debug_names
section (DWARF5 accelerator table).
llvm-svn: 336433
The original binary holder has an optimization where it caches a static
library (archive) between consecutive calls to GetObjects. However, the
actual memory buffer wasn't cached between calls.
This made sense when dsymutil was processing objects one after each
other, but when processing them in parallel, several binaries have to be
in memory at the same time. For this reason, every link context
contained a binary holder.
Having one binary holder per context is problematic, because the same
static archive was cached for every object file. Luckily, when the file
is mmap'ed, this was only costing us virtual memory.
This patch introduces a new BinaryHolder variant that is fully cached,
for all the object files it load, as well as the static archives. This
way, we don't have to give up on this optimization of bypassing the
file system.
Differential revision: https://reviews.llvm.org/D48501
llvm-svn: 335990
This patch splits off some abstractions used by dsymutil's dwarf linker
and moves them into separate header and implementation files. This
almost halves the number of LOC in DwarfLinker.cpp and makes it a lot
easier to understand what functionality lives where.
Differential revision: https://reviews.llvm.org/D48647
llvm-svn: 335749
After the recent refactoring that introduced parallel handling of
different object, the binary holder became unique per object file. This
defeats its optimization of caching archives, leading to an archive
being opened for every binary it contains. This is obviously unfortunate
and will need to be refactored soon.
Luckily in practice, the impact of this is limited as most files are
mmap'ed instead of memcopy'd. There's a caveat however: when the memory
buffer requires a null terminator and it's a multiple of the page size,
we allocate instead of mmap'ing. If this happens for a static archive,
we end up with N copies of it in memory, where N is the number of
objects in the archive, leading to exuberant memory usage. This provided
a stopgap solution to ensure that all the files it loads are mmap in
memory by removing the requirement for a terminating null byte.
Differential revision: https://reviews.llvm.org/D48397
llvm-svn: 335293