This patch adds a new flag named -bottleneck-analysis to print out information
about throughput bottlenecks.
MCA knows how to identify and classify dynamic dispatch stalls. However, it
doesn't know how to analyze and highlight kernel bottlenecks. The goal of this
patch is to teach MCA how to correlate increases in backend pressure to backend
stalls (and therefore, the loss of throughput).
From a Scheduler point of view, backend pressure is a function of the scheduler
buffer usage (i.e. how the number of uOps in the scheduler buffers changes over
time). Backend pressure increases (or decreases) when there is a mismatch
between the number of opcodes dispatched, and the number of opcodes issued in
the same cycle. Since buffer resources are limited, continuous increases in
backend pressure would eventually leads to dispatch stalls. So, there is a
strong correlation between dispatch stalls, and how backpressure changed over
time.
This patch teaches how to identify situations where backend pressure increases
due to:
- unavailable pipeline resources.
- data dependencies.
Data dependencies may delay execution of instructions and therefore increase the
time that uOps have to spend in the scheduler buffers. That often translates to
an increase in backend pressure which may eventually lead to a bottleneck.
Contention on pipeline resources may also delay execution of instructions, and
lead to a temporary increase in backend pressure.
Internally, the Scheduler classifies instructions based on whether register /
memory operands are available or not.
An instruction is marked as "ready to execute" only if data dependencies are
fully resolved.
Every cycle, the Scheduler attempts to execute all instructions that are ready
to execute. If an instruction cannot execute because of unavailable pipeline
resources, then the Scheduler internally updates a BusyResourceUnits mask with
the ID of each unavailable resource.
ExecuteStage is responsible for tracking changes in backend pressure. If backend
pressure increases during a cycle because of contention on pipeline resources,
then ExecuteStage sends a "backend pressure" event to the listeners.
That event would contain information about instructions delayed by resource
pressure, as well as the BusyResourceUnits mask.
Note that ExecuteStage also knows how to identify situations where backpressure
increased because of delays introduced by data dependencies.
The SummaryView observes "backend pressure" events and prints out a "bottleneck
report".
Example of bottleneck report:
```
Cycles with backend pressure increase [ 99.89% ]
Throughput Bottlenecks:
Resource Pressure [ 0.00% ]
Data Dependencies: [ 99.89% ]
- Register Dependencies [ 0.00% ]
- Memory Dependencies [ 99.89% ]
```
A bottleneck report is printed out only if increases in backend pressure
eventually caused backend stalls.
About the time complexity:
Time complexity is linear in the number of instructions in the
Scheduler::PendingSet.
The average slowdown tends to be in the range of ~5-6%.
For memory intensive kernels, the slowdown can be significant if flag
-noalias=false is specified. In the worst case scenario I have observed a
slowdown of ~30% when flag -noalias=false was specified.
We can definitely recover part of that slowdown if we optimize class LSUnit (by
doing extra bookkeeping to speedup queries). For now, this new analysis is
disabled by default, and it can be enabled via flag -bottleneck-analysis. Users
of MCA as a library can enable the generation of pressure events through the
constructor of ExecuteStage.
This patch partially addresses https://bugs.llvm.org/show_bug.cgi?id=37494
Differential Revision: https://reviews.llvm.org/D58728
llvm-svn: 355308
Dispatch stall cycles may be associated to multiple dispatch stall events.
Before this patch, each stall cycle was associated with a single stall event.
This patch also improves a couple of code comments, and adds a helper method to
query the Scheduler for dispatch stalls.
llvm-svn: 354877
Summary:
The AX/EAX/RAX with immediate forms are 2 uops just like the AL with immediate.
The modrm form with r8 and immediate is a single uop just like r16/r32/r64 with immediate.
Reviewers: RKSimon, andreadb
Reviewed By: RKSimon
Subscribers: gbedwell, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D58581
llvm-svn: 354754
This patch fixes a bug where register writes performed by optimizable register
moves were sometimes wrongly treated like partial register updates. Before this
patch, llvm-mca wrongly predicted a 1.50 IPC for test reg-move-elimination-6.s
(added by this patch). With this patch, llvm-mca correctly updates the register
defintions in the PRF, and the IPC for that test is now correctly reported as 2.
llvm-svn: 354271
All of these instructions consume one encoded register and the other register is %st. They either write the result to %st or the encoded register. Previously we printed both arguments when the encoded register was written. And we printed one argument when the result was written to %st. For the stack popping forms the encoded register is always the destination and we didn't print both operands. This was inconsistent with gcc and objdump and just makes the output assembly code harder to read.
This patch changes things to always print both operands making us consistent with gcc and objdump. The parser should still be able to handle the single register forms just as it did before. This also matches the GNU assembler behavior.
llvm-svn: 353061
Looking into gcc and objdump behavior more this was overly aggressive. If the register is encoded in the instruction we should print %st(0), if its implicit we should print %st.
I'll be making a more directed change in a future patch.
llvm-svn: 353013
Summary:
When calculating clobbers for MS style inline assembly we fail if the asm clobbers stack top because we print st(0) and try to pass it through the gcc register name check. This was found with when I attempted to make a emms/femms clobber all ST registers. If you use emms/femms in MS inline asm we would try to use st(0) as the clobber name but clang would think that wasn't a valid clobber name.
This also matches what objdump disassembly prints. It's also what is printed by gcc -S.
Reviewers: RKSimon, rnk, efriedma, spatel, andreadb, lebedev.ri
Reviewed By: rnk
Subscribers: eraman, gbedwell, lebedev.ri, llvm-commits
Differential Revision: https://reviews.llvm.org/D57621
llvm-svn: 352985
Summary:
I'm unable to find this number in the "AMD SOG for family 15h".
llvm-exegesis measures the latencies of these instructions as `2`,
which matches the latencies specified in "AMD SOG for family 15h".
However if we look at Agner, Microarchitecture, "AMD Bulldozer, Piledriver,
Steamroller and Excavator pipeline", "Data delay between different execution
domains", the int->ivec transfer is listed as `8`..`10`cy of additional latency.
Also, Agner's "Instruction tables", for Piledriver, lists their latencies as `12`,
which is consistent with `2cy` from exegesis / AMD SOG + `10cy` transfer delay.
Additional data point comes from the fact that Agner's "Instruction tables",
for Jaguar, lists their latencies as `8`; and "AMD SOG for family 16h" does
state the `+6cy` int->ivec delay, which is consistent with instr latency of `1` or `2`.
Reviewers: andreadb, RKSimon, craig.topper
Reviewed By: andreadb
Subscribers: gbedwell, courbet, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57300
llvm-svn: 352861
Account for bypass delays when computing the latency of scalar int-to-float
conversions.
On Jaguar we need to account for an extra 6cy latency (see AMD fam16h SOG).
This patch also fixes the number of micropcodes for the register-memory variants
of scalar int-to-float conversions.
Differential Revision: https://reviews.llvm.org/D57148
llvm-svn: 352518
Match the coverage of test\CodeGen\X86\avx512-shuffle-schedule.ll so we can get rid of -print-schedule (and fix PR37160) without losing schedule tests
llvm-svn: 352179
This patch adds a new ReadAdvance definition named ReadInt2Fpu.
ReadInt2Fpu allows x86 scheduling models to accurately describe delays caused by
data transfers from the integer unit to the floating point unit.
ReadInt2Fpu currently defaults to a delay of zero cycles (i.e. no delay) for all
x86 models excluding BtVer2. That means, this patch is only a functional change
for the Jaguar cpu model only.
Tablegen definitions for instructions (V)PINSR* have been updated to account for
the new ReadInt2Fpu. That read is mapped to the the GPR input operand.
On Jaguar, int-to-fpu transfers are modeled as a +6cy delay. Before this patch,
that extra delay was added to the opcode latency. In practice, the insert opcode
only executes for 1cy. Most of the actual latency is actually contributed by the
so-called operand-latency. According to the AMD SOG for family 16h, (V)PINSR*
latency is defined by expression f+1, where f is defined as a forwarding delay
from the integer unit to the fpu.
When printing instruction latency from MCA (see InstructionInfoView.cpp) and LLC
(only when flag -print-schedule is speified), we now need to account for any
extra forwarding delays. We do this by checking if scheduling classes declare
any negative ReadAdvance entries. Quoting a code comment in TargetSchedule.td:
"A negative advance effectively increases latency, which may be used for
cross-domain stalls". When computing the instruction latency for the purpose of
our scheduling tests, we now add any extra delay to the formula. This avoids
regressing existing codegen and mca schedule tests. It comes with the cost of an
extra (but very simple) hook in MCSchedModel.
Differential Revision: https://reviews.llvm.org/D57056
llvm-svn: 351965
Ensure we keep avx512f/bw/dq + vl versions separate, add example broadcast tests - this should allow us to better the test coverage of test\CodeGen\X86\avx512-schedule.ll
llvm-svn: 351848
We're getting pretty close to matching/exceeding test coverage of the test\CodeGen\X86\*-schedule.ll files, which should allow us to get rid of -print-schedule and fix PR37160
llvm-svn: 351836
Similar to horizontal ops on D56777, the sse2 (but not mmx) bit shift ops has local forwarding disabled, adding +1cy to the use latency for the result.
Differential Revision: https://reviews.llvm.org/D57026
llvm-svn: 351817
Similar to horizontal ops on D56777, the vpermilpd/vpermilps variable mask ops has local forwarding disabled, adding +1cy to the use latency for the result.
Differential Revision: https://reviews.llvm.org/D57022
llvm-svn: 351815
D56777 added +1cy local forwarding penalty for horizontal operations, but this penalty only affects sse2/xmm variants, the mmx variants don't suffer the penalty.
Confirmed with @andreadb
llvm-svn: 351755
r327630 introduced new write definitions for float/vector loads.
Before that revision, WriteLoad was used by both integer/float (scalar/vector)
load. So, WriteLoad had to conservatively declare a latency to 5cy. That is
because the load-to-use latency for float/vector load is 5cy.
Now that we have dedicated writes for float/vector loads, there is no reason why
we should keep the latency of WriteLoad to 5cy. At the moment, WriteLoad is only
used by scalar integer loads only; we can assume an optimstic 3cy latency for
them.
This patch changes that latency from 5cy to 3cy, and regenerates the affected
scheduling/mca tests.
Differential Revision: https://reviews.llvm.org/D56922
llvm-svn: 351742
On Jaguar, horizontal adds/subs have local forwarding disable.
That means, we pay a compulsory extra cycle of write-back stage, and the value
is not available until the end of that stage.
This patch changes the latency of horizontal operations by adding an extra
cycle. With this patch, latency numbers now match what is reported by perf.
I plan to send another patch to also 'fix' the latency of shuffle operations (on
Jaguar, local forwarding is disabled for vector shuffles too).
Differential Revision: https://reviews.llvm.org/D56777
llvm-svn: 351366
Class InstrBuilder wrongly assumed that llvm targets were always able to return
a non-null pointer when createMCInstrAnalysis() was called on them.
This was causing crashes when simulating executions for targets that don't
provide an MCInstrAnalysis object.
This patch fixes the issue by making MCInstrAnalysis optional.
llvm-svn: 349352
Refactor the scheduling predicates based on `MCInstPredicate`. In this
case, for the Exynos processors.
Differential revision: https://reviews.llvm.org/D55345
llvm-svn: 348774
It was failing as below. Adding a triple seems to help.
--
: 'RUN: at line 2'; /work/llvm.combined/build.release/bin/llvm-mca -march=aarch64 -mcpu=exynos-m1 -resource-pressure=false < /work/llvm.combined/llvm/test/tools/llvm-mca/AArch64/Exynos/direct-branch.s | /work/llvm.combined/build.release/bin/FileCheck /work/llvm.combined/llvm/test/tools/llvm-mca/AArch64/Exynos/direct-branch.s -check-prefixes=ALL,M1
: 'RUN: at line 3'; /work/llvm.combined/build.release/bin/llvm-mca -march=aarch64 -mcpu=exynos-m3 -resource-pressure=false < /work/llvm.combined/llvm/test/tools/llvm-mca/AArch64/Exynos/direct-branch.s | /work/llvm.combined/build.release/bin/FileCheck /work/llvm.combined/llvm/test/tools/llvm-mca/AArch64/Exynos/direct-branch.s -check-prefixes=ALL,M3
--
Exit Code: 1
Command Output (stderr):
--
/work/llvm.combined/llvm/test/tools/llvm-mca/AArch64/Exynos/direct-branch.s:36:12: error: M1-NEXT: expected string not found in input
^
<stdin>:21:2: note: scanning from here
1 0 0.25 b Ltmp0
^
--
llvm-svn: 348577
This patch adds the ability to specify via tablegen which processor resources
are load/store queue resources.
A new tablegen class named MemoryQueue can be optionally used to mark resources
that model load/store queues. Information about the load/store queue is
collected at 'CodeGenSchedule' stage, and analyzed by the 'SubtargetEmitter' to
initialize two new fields in struct MCExtraProcessorInfo named `LoadQueueID` and
`StoreQueueID`. Those two fields are identifiers for buffered resources used to
describe the load queue and the store queue.
Field `BufferSize` is interpreted as the number of entries in the queue, while
the number of units is a throughput indicator (i.e. number of available pickers
for loads/stores).
At construction time, LSUnit in llvm-mca checks for the presence of extra
processor information (i.e. MCExtraProcessorInfo) in the scheduling model. If
that information is available, and fields LoadQueueID and StoreQueueID are set
to a value different than zero (i.e. the invalid processor resource index), then
LSUnit initializes its LoadQueue/StoreQueue based on the BufferSize value
declared by the two processor resources.
With this patch, we more accurately track dynamic dispatch stalls caused by the
lack of LS tokens (i.e. load/store queue full). This is also shown by the
differences in two BdVer2 tests. Stalls that were previously classified as
generic SCHEDULER FULL stalls, are not correctly classified either as "load
queue full" or "store queue full".
About the differences in the -scheduler-stats view: those differences are
expected, because entries in the load/store queue are not released at
instruction issue stage. Instead, those are released at instruction executed
stage. This is the main reason why for the modified tests, the load/store
queues gets full before PdEx is full.
Differential Revision: https://reviews.llvm.org/D54957
llvm-svn: 347857
This change is in preparation for a patch that fixes PR36666.
llvm-mca currently doesn't know if a buffered processor resource describes a
load or store queue. So, any dynamic dispatch stall caused by the lack of
load/store queue entries is normally reported as a generic SCHEDULER stall. See for
example the -dispatch-stats output from the two tests modified by this patch.
In future, processor models will be able to tag processor resources that are
used to describe load/store queues. That information would then be used by
llvm-mca to correctly classify dynamic dispatch stalls caused by the lack of
tokens in the LS.
llvm-svn: 347662