forked from OSchip/llvm-project
2 Commits
Author | SHA1 | Message | Date |
---|---|---|---|
Chandler Carruth | 93a645525c |
[x86] Teach the cmov converter to aggressively convert cmovs with memory
operands into control flow. We have seen periodically performance problems with cmov where one operand comes from memory. On modern x86 processors with strong branch predictors and speculative execution, this tends to be much better done with a branch than cmov. We routinely see cmov stalling while the load is completed rather than continuing, and if there are subsequent branches, they cannot be speculated in turn. Also, in many (even simple) cases, macro fusion causes the control flow version to be fewer uops. Consider the IACA output for the initial sequence of code in a very hot function in one of our internal benchmarks that motivates this, and notice the micro-op reduction provided. Before, SNB: ``` Throughput Analysis Report -------------------------- Block Throughput: 2.20 Cycles Throughput Bottleneck: Port1 | Num Of | Ports pressure in cycles | | | Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | | --------------------------------------------------------------------- | 1 | | 1.0 | | | | | CP | mov rcx, rdi | 0* | | | | | | | | xor edi, edi | 2^ | 0.1 | 0.6 | 0.5 0.5 | 0.5 0.5 | | 0.4 | CP | cmp byte ptr [rsi+0xf], 0xf | 1 | | | 0.5 0.5 | 0.5 0.5 | | | | mov rax, qword ptr [rsi] | 3 | 1.8 | 0.6 | | | | 0.6 | CP | cmovbe rax, rdi | 2^ | | | 0.5 0.5 | 0.5 0.5 | | 1.0 | | cmp byte ptr [rcx+0xf], 0x10 | 0F | | | | | | | | jb 0xf Total Num Of Uops: 9 ``` After, SNB: ``` Throughput Analysis Report -------------------------- Block Throughput: 2.00 Cycles Throughput Bottleneck: Port5 | Num Of | Ports pressure in cycles | | | Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | | --------------------------------------------------------------------- | 1 | 0.5 | 0.5 | | | | | | mov rax, rdi | 0* | | | | | | | | xor edi, edi | 2^ | 0.5 | 0.5 | 1.0 1.0 | | | | | cmp byte ptr [rsi+0xf], 0xf | 1 | 0.5 | 0.5 | | | | | | mov ecx, 0x0 | 1 | | | | | | 1.0 | CP | jnbe 0x39 | 2^ | | | | 1.0 1.0 | | 1.0 | CP | cmp byte ptr [rax+0xf], 0x10 | 0F | | | | | | | | jnb 0x3c Total Num Of Uops: 7 ``` The difference even manifests in a throughput cycle rate difference on Haswell. Before, HSW: ``` Throughput Analysis Report -------------------------- Block Throughput: 2.00 Cycles Throughput Bottleneck: FrontEnd | Num Of | Ports pressure in cycles | | | Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 | | --------------------------------------------------------------------------------- | 0* | | | | | | | | | | mov rcx, rdi | 0* | | | | | | | | | | xor edi, edi | 2^ | | | 0.5 0.5 | 0.5 0.5 | | 1.0 | | | | cmp byte ptr [rsi+0xf], 0xf | 1 | | | 0.5 0.5 | 0.5 0.5 | | | | | | mov rax, qword ptr [rsi] | 3 | 1.0 | 1.0 | | | | | 1.0 | | | cmovbe rax, rdi | 2^ | 0.5 | | 0.5 0.5 | 0.5 0.5 | | | 0.5 | | | cmp byte ptr [rcx+0xf], 0x10 | 0F | | | | | | | | | | jb 0xf Total Num Of Uops: 8 ``` After, HSW: ``` Throughput Analysis Report -------------------------- Block Throughput: 1.50 Cycles Throughput Bottleneck: FrontEnd | Num Of | Ports pressure in cycles | | | Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | 6 | 7 | | --------------------------------------------------------------------------------- | 0* | | | | | | | | | | mov rax, rdi | 0* | | | | | | | | | | xor edi, edi | 2^ | | | 1.0 1.0 | | | 1.0 | | | | cmp byte ptr [rsi+0xf], 0xf | 1 | | 1.0 | | | | | | | | mov ecx, 0x0 | 1 | | | | | | | 1.0 | | | jnbe 0x39 | 2^ | 1.0 | | | 1.0 1.0 | | | | | | cmp byte ptr [rax+0xf], 0x10 | 0F | | | | | | | | | | jnb 0x3c Total Num Of Uops: 6 ``` Note that this cannot be usefully restricted to inner loops. Much of the hot code we see hitting this is not in an inner loop or not in a loop at all. The optimization still remains effective and indeed critical for some of our code. I have run a suite of internal benchmarks with this change. I saw a few very significant improvements and a very few minor regressions, but overall this change rarely has a significant effect. However, the improvements were very significant, and in quite important routines responsible for a great deal of our C++ CPU cycles. The gains pretty clealy outweigh the regressions for us. I also ran the test-suite and SPEC2006. Only 11 binaries changed at all and none of them showed any regressions. Amjad Aboud at Intel also ran this over their benchmarks and saw no regressions. Differential Revision: https://reviews.llvm.org/D36858 llvm-svn: 311226 |
|
Simon Pilgrim | 0ad0e5802b |
[X86] Add test case for PR15981
llvm-svn: 306296 |